• Title/Summary/Keyword: solid fermentation

Search Result 410, Processing Time 0.027 seconds

Physicochemical Characteristics and Varietal Improvement Related to Palatability of Cooked Rice or Suitability to Food Processing in Rice (쌀 식미 및 가공적성에 관련된 이화학적 특성)

  • 최해춘
    • Proceedings of the Korean Journal of Food and Nutrition Conference
    • /
    • 2001.12a
    • /
    • pp.39-74
    • /
    • 2001
  • The endeavors enhancing the grain quality of high-yielding japonica rice were steadily continued during 1980s∼1990s along with the self-sufficiency of rice production and the increasing demands of high-quality rices. During this time, considerably great, progress and success was obtained in development of high-quality japonica cultivars and qualify evaluation techniques including the elucidation of interrelationship between the physicochemical properties of rice grain and the physical or palatability components of cooked rice. In 1990s, some high-quality japonica rice caltivars and special rices adaptable for food processing such as large kernel, chalky endosperm aromatic and colored rices were developed and its objective preference and utility was also examined by a palatability meter, rapid-visco analyzer and texture analyzer. The water uptake rate and the maximum water absorption ratio showed significantly negative correlations with the K/Mg ratio and alkali digestion value(ADV) of milled rice. The rice materials showing the higher amount of hot water absorption exhibited the larger volume expansion of cooked rice. The harder rices with lower moisture content revealed the higher rate of water uptake at twenty minutes after soaking and the higher ratio of maximum water uptake under the room temperature condition. These water uptake characteristics were not associated with the protein and amylose contents of milled rice and the palatability of cooked rice. The water/rice ratio (in w/w basis) for optimum cooking was averaged to 1.52 in dry milled rices (12% wet basis) with varietal range from 1.45 to 1.61 and the expansion ratio of milled rice after proper boiling was average to 2.63(in v/v basis). The major physicochemical components of rice grain associated with the palatability of cooked rice were examined using japonica rice materials showing narrow varietal variation in grain size and shape, alkali digestibility, gel consistency, amylose and protein contents, but considerable difference in appearance and torture of cooked rice. The glossiness or gross palatability score of cooked rice were closely associated with the peak. hot paste and consistency viscosities of viscogram with year difference. The high-quality rice variety “Ilpumbyeo” showed less portion of amylose on the outer layer of milled rice grain and less and slower change in iodine blue value of extracted paste during twenty minutes of boiling. This highly palatable rice also exhibited very fine net structure in outer layer and fine-spongy and well-swollen shape of gelatinized starch granules in inner layer and core of cooked rice kernel compared with the poor palatable rice through image of scanning electronic mcroscope. Gross sensory score of cooked rice could be estimated by multiple linear regression formula, deduced from relationship between rice quality components mentioned above and eating quality of cooked rice, with high Probability of determination. The ${\alpha}$ -amylose-iodine method was adopted for checking the varietal difference in retrogradation of cooked rice. The rice cultivars revealing the relatively slow retrogradation in aged cooked rice were Ilpumbyeo, Chucheongbyeo, Sasanishiki, Jinbubyeo and Koshihikari. A Tongil-type rice, Taebaegbyeo, and a japonica cultivar, Seomjinbyeo, shelved the relatively fast deterioration of cooked rice. Generally, the better rice cultivars in eating quality of cooked rice showed less retrogiadation and much sponginess in cooled cooked rice. Also, the rice varieties exhibiting less retrogradation in cooled cooked rice revealed higher hot viscosity and lower cool viscosity of rice flour in amylogram. The sponginess of cooled cooked rice was closely associated with magnesium content and volume expansion of cooked rice. The hardness-changed ratio of cooked rice by cooling was negatively correlated with solids amount extracted during boiling and volume expansion of cooked rice. The major physicochemical properties of rice grain closely related to the palatability of cooked rice may be directly or indirectly associated with the retrogradation characteristics of cooked rice. The softer gel consistency and lower amylose content in milled rice revealed the higher ratio of popped rice and larger bulk density of popping. The stronger hardness of rice grain showed relatively higher ratio of popping and the more chalky or less translucent rice exhibited the lower ratio of intact popped brown rice. The potassium and magnesium contents of milled rice were negatively associated with gross score of noodle making mixed with wheat flour in half and the better rice for noodle making revealed relatively less amount of solid extraction during boiling. The more volume expansion of batters for making brown rice bread resulted the better loaf formation and more springiness in rice bread. The higher protein rices produced relatively the more moist white rice bread. The springiness of rice bread was also significantly correlated with high amylose content and hard gel consistency. The completely chalky and large gram rices showed better suitability for fermentation and brewing. Our breeding efforts on rice quality improvement for the future should focus on enhancement of palatability of cooked rice and marketing qualify as well as the diversification in morphological and physicochemical characteristics of rice grain for various value-added rice food processings.

  • PDF

Mass Screening of Lovastatin High-yielding Mutants through Statistical Optimization of Sporulation Medium and Application of Miniaturized Fungal Cell Cultures (Lovastatin 고생산성 변이주의 신속 선별을 위해 통계적 방법을 적용한 Sporulation 배지 개발 및 Miniature 배양 방법 개발)

  • Ahn, Hyun-Jung;Jeong, Yong-Seob;Kim, Pyeung-Hyeun;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.297-304
    • /
    • 2007
  • For large and rapid screening of high-yielding mutants of lovastatin produced by filamentous fungal cells of Aspergillus terreus, one of the most important stage is to test as large amounts of mutated strains as possible. For this purpose, we intended to develop a miniaturized cultivation method using $7m{\ell}$ culture tube instead of traditional $250m{\ell}$ flask (working volume $50m{\ell}$). For obtaining large amounts of conidiospores to be used as inoculums for miniaturized cultures, 4 components i.e., glucose, sucrose, yeast extract and $KH_2PO_4$ were intensively investigated, which had been observed to show positive effect on enhancement of spore production through Plackett-Burman design experimet. When optimum concentrations of these components that were determined through application of response surface method (RSM) based on central composite design (CCD) were used, maximum spore numbers amounting to $1.9\times10^{10}$ spores/plate were obtained, resulting in approximately 190 fold increase as compared to the commonly used PDA sporulation medium. Using the miniaturized cultures, intensive strain development programs were carried out for screening of lovastatin high-yielding as well as highly reproducible mutants. It was observed that, for maximum production of lovastatin, the producers should be activated through 'PaB' adaptation process during the early solid culture stage. In addition, they should be proliferated in condensed filamentous forms in miniaturized growth cultures, so that optimum amounts of highly active cells could be transferred to the production culture-tube as reproducible inoculums. Under these highly controlled fermentation conditions, compact-pelleted morphology of optimum size (less than 1 mm in diameter) was successfully induced in the miniaturized production cultures, which proved essential for maximal utilization of the producers' physiology leading to significantly enhanced production of lovastatin. As a result of continuous screening in the miniaturized cultures, lovastatin production levels of the 81% of the daughter cells derived from the high-yielding producers turned out to be in the range of 80%$\sim$120% of the lovastatin production level of the parallel flask cultures. These results demonstrate that the miniaturized cultivation method developed in this study is efficient high throughput system for large and rapid screening of highly stable and productive strains.

Biogas Production from Anaerobic Co-digestion Using the Swine Manure and Organic Byproduct (돈분과 유기성 부산물을 혼합한 혐기소화에서 바이오가스 생산)

  • Kim, W.G.;Oh, I.H.;Yang, S.Y.;Lee, K.M.;Lee, S.I.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.1
    • /
    • pp.49-54
    • /
    • 2011
  • Animal manure is produced annually 43.7 million tonnes in Korea. Among them, about 85.6 % are used as compost or liquid fertilizer to the agricultural land. The animal manure can be effectively utilized by mixing with organic byproducts that result in generation of biogas from anaerobic co-digestion process. This study aimed to optimize the content of total solid materials (TS) and determine the effect of organic byproduct on the co-digestion process. Prior to the byproduct treatments, determination of proper content of TS was conducted by controlling at 5 or 10 %. For the byproduct treatments, swine manure without adding the byproduct was used for control treatment, and swine manure mixed with either corn silage or kitchen waste was used for other treatments. Volume of biomethane ($CH_4$) generated from digested materials was quantified before and after byproduct treatments. In result, a 1.4-fold higher biomethane, about 0.556 L/$L{\cdot}d$, was produced when the content of TS was controlled at 10 %, compared at 5 %, about 0.389 L/$L{\cdot}d$. When the swine manure was mixed with the corn silage or kitchen waste, a two-fold higher biomethane was produced, about 1.theand 1.0heL/$L{\cdot}d$, respectively, compared to the control treatment. Biogas production from organic dry matter (odm) was a3, 362eand 2h6 L/kg odm${\cdot}$d for control, corn silage, and kitchen waste treatment, respectively. The lower biogas production in the treatment of kitchen waste than that of corn silage is associated with its relatively high odm contents. The methane concentration during the whole process ranged from 40 at the beginning to 70 % at the end of process for both the control and kitchen waste treatments, and ranged from 52 to 70 % for the corn silage treatment. Hydrogen sulfide ($H_2S$) concentration ranged between 350 and 500 ppm. All the integrated results indicate that addition of organic byproduct into animal manure can double the generation of biogas from anaerobic fermentation process.

Physicochemical Characteristics and Volatile Compounds of Glutinous Rice Wines Depending on the Milling Degrees (도정도에 따른 찹쌀발효주의 이화학적 특성 및 휘발성 향기성분)

  • Kim, Hye-Ryun;Lee, Ae-Ran;Kwon, Young-Hee;Lee, Hyang-Jeong;Jo, Sung-Jin;Kim, Jae-Ho;Ahn, Byung-Hak
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.75-81
    • /
    • 2010
  • In order to investigate the effects of different milling degrees on the quality of glutinous rice wines, the physicochemical properties and volatile compounds of various wines were evaluated. Sample wines prepared from glutinous rice with 90, 80, and 70% milling yields were analyzed for ethanol, pH, total acids, amino acids, soluble solids, coloring degree, UV absorbance, reducing sugars, organic acids, free sugars and volatile compounds. After fermentation for 17 days, ethanol contents in the wines ranged from 15.2 to 15.85%, while total acid levels ranged from 0.31 to 0.35%. The amino acid contents in four samples ranged from 0.63 to 0.73%, while soluble solid contents ranged from 11.4 to $13.1^{\circ}Bx$. The wine prepared from glutinous rice with a 30% degree of milling showed the highest coloring degree, UV absorbance and reducing sugar content among four samples. Furthermore, this wine had the highest levels of malic acid and acetic acid, while the glutinous rice wine prepared from rice with a 0% degree of milling had the highest levels of succinic acid and lactic acid. In all the glutinous rice wines tested, the most abundant free sugar was glucose followed by maltose. With increasing degree of milling, the alcohol, amino acid and organic acid contents of the glutinous rice wines decreased, whereas soluble solids, coloring degree, UV absorbance, reducing sugar and free sugar contents increased. Volatile compounds were identified using GC-MSD, and thirty-nine esters, seven alcohols, six acids, one aldehyde, four alkanes, one alkene and two miscellaneous compounds were identified in the glutinous rice wines. Using relative peak area, it was determined that other than ethyl alcohol, hexadecanoic acid ethyl ester was the major component and was primarily found in the range of 11.566-18.437%. Succinic acid diethyl ester and isoamyl laurate decreased with an increasing degree of milling, whereas hexanoic acid ethyl ester and 2-octenoic acid ethyl ester increased. Overall, it was shown that different milling degrees greatly affected the physicochemical and volatile characteristics of the glutinous rice wines.

Optimization of Encapsulation Conditions for Fermented Red Ginseng Extracts by Using Cyclodextrin (Cyclodextrin을 이용한 발효홍삼농축액 최적 포접 조건)

  • Shin, Myung-Gon;Lee, Gyu-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.11
    • /
    • pp.1708-1714
    • /
    • 2015
  • Fermented red ginseng concentrate is known as a healthy food source, whereas it has off-flavor such as bitterness and sour flavor based on fermentation. ${\beta}$- and ${\gamma}$-cyclodextrin (CD) were used to encapsulate the off-flavor of fermented red ginseng concentrate by using response surface methodology design on ${\beta}$- and ${\gamma}-CD$ combination. The reducing effects were analyzed by sensory evaluation for bitter and sour tastes, ginsenoside Rb1, and total acidity. The optimized mixing ratio of ${\beta}$- and ${\gamma}-CD$ for reducing bitterness was the least expected value of 2.07 at ${\beta}-CD$ 3.74% versus the soluble solid content of fermented red ginseng concentrate and the ${\gamma}-CD$ 20.63% mixture. The encapsulation effects of ginsenoside Rb1 were the most expected value of 96.75% at ${\beta}-CD$ 3.47% and ${\gamma}-CD$ 19.89% mixture. The encapsulation effects of sour taste were the least expected value of 5.63 at ${\beta}-CD$ 9.34% and ${\gamma}-CD$ 9.96% mixture. The encapsulation effects of lactic acid were the most expected value of 67.73% at ${\beta}-CD$ 16.0% and ${\gamma}-CD$ 13.18% mixture. Based on encapsulation and each optimized combination, the most effective entrapping ${\beta}$-and ${\gamma}-CD$ combination ratio was ${\beta}-CD$ 10% and ${\gamma}-CD$ 13%.

Effect of ${\alpha}-Amylase$ Treatment of Brown Rice(Goami) Alcohol Fermentation By-Product (현미(고아미) 알코올발효 부산물의 ${\alpha}-amylase$처리 효과)

  • Woo, Seung-Mi;Kim, Tae-Young;Yeo, Soo-Hwan;Kim, Sang-Burm;Kim, Mi-Hyun;Woo, Sang-Chel;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.14 no.6
    • /
    • pp.617-623
    • /
    • 2007
  • To utilize the non-heat treated alcoholic by-products of brown rice(Goami) as food sources, the quality characteristics change according to the treatment conditions of ${\alpha}-amylase$ were evaluated. It resulted that the increase of hydrolysis temperature correspondingly increased the soluble solids, total dietary fiber and total sugar in the by-products of Goami, and the highest reducing sugar content was observed at $80^{\circ}C$. The free amino acids contents were tended to slowly decrease by the hydrolysis temperature more than $70^{\circ}C$, and the highest content of oligosaccharides were detected at the hydrolysis temperature of $80^{\circ}C$. The soluble solid according to the ${\alpha}-amylase$ concentration resulted to increase with the increase of the enzyme concentration and the total dietary fiber revealed similarly showing approximately 0.65%. The high content of reducing sugars was observed at the enzyme concentration around 0.08%(v/w). Total sugars and oligosaccharides contents tend to increase as the concentration of enzyme increased, and the content of oligosaccharides acquired at the enzyme concentration more than 0.10%(v/w) maintained to show rather similar contents. The soluble solids and total dietary fiber by hydrolysis time were found to show 6.66% and 0.65%, respectively at more than 60 min of hydrolysis, and the reducing sugars and total sugars were found to be 3,600 and 4,800 mg% in all treatment groups showing no significant difference. The content of oligosaccharides was increased with the increase of hydrolysis time, and the content was similar at more than 90 min of hydrolysis by ranging around 2,100 mg%. Based upon these results, the by-products of Goami are expected to be used as various food sources showing the highest dietary fiber and oligosaccharides contents by the hydrolysis at $80^{\circ}C$ for 90 min with the addition of 0.10%(v/w) of ${\alpha}-amylase$.

Mycelial Growth Using the Natural Product and Angiotensin Converting Enzyme Inhibition Activity of Pleurotus eryngii (천연물을 이용한 큰느타리 균사배양 및 Angiotensin Converting Enzyme 저해활성)

  • Kang, Tae-Su;Jeong, Heon-Sang;Lee, Myong-Yul;Park, Hee-Joeng;Jho, Taek-Sang;Ji, Seung-Taek;Shin, Myung-Keun
    • The Korean Journal of Mycology
    • /
    • v.31 no.3
    • /
    • pp.175-180
    • /
    • 2003
  • To develop the health/functional food materials, we investigated the cultural condition of mycelial growth on the solid state fermentation using the brown rise, Acanthopanax sp. and Artemisia sp., and also evaluated inhibitory activity of angiotensin converting enzyme (ACE) of hot water extracts from cultured media of Pleurotus eryngii. As the amount of Acanthopanax nnd Artemisia In the cultural media increased, the mycelial growth rate decreased. Especially, addition of Aeantopanax showed marked effect than Artemisia. Moisture contents in three kinds of cultured media were in the range of $10.9{\sim}12.0%$. Crude protein fat and crude fiber content were the highest value in cultured brown rice medium, whereas the mineral contents (Ca, K and P) were higher in the Acanthopanax supplemented (5%) medium than the other media, The extraction yield of the Artemisia supplemented (5%) medium was the highest value of 4.80%, and the pH of hot water extract from cultured brown rice medium showed the lowest value of 6.1. Lightness (L) values in three kinds of extracts from cultured media were in the range of $85.8{\sim}87.1$. Redness (a) value was the highest In the brown rice and Acanthopanax supplemented media, however cultured Artemisia supplemented medium showed the highest value in yellowness (b). In comparison of sugar components analyzed by the thin layer chromatography with three kinds of samples, two spots were detected to be glucose and maltose, respectively. The ACE inhibitory activity of hot water extract from the cultured Acanthopanax supplemented medium showed the highest value at the concentration of $0.2{\sim}1.0\;mg/ml$. These results suggest that the Pleurotus eryngii grew in natural media using brown rice and Acanthopanax can be supplemented to the brown rice medium to enhance its ACE inhibitory activity as health/functional food materials.

Changes in Characteristics of Brown Rice (Goami) Alcohol Fermentation By-Product by Cellulase (Cellulase처리에 따른 현미(고아미) 알코올발효 부산물의 특성 변화)

  • Woo, Seung-Mi;Jang, Se-Young;Park, Nan-Yong;Kim, Tae-Young;Yeo, Soo-Hwan;Kim, Sang-Burm;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.15 no.1
    • /
    • pp.99-104
    • /
    • 2008
  • To utilize non-heat treated alcoholic by-products of brown rice (Goami) as food sources, the quality characteristics changes according to the treatment conditions of cellulase were evaluated. Results showed that the increase of hydrolysis temperature correspondingly increased the soluble solids and total sugar amounts in the by-products of Goami, and total dietary fiber amount was found to be around 0.67% Reducing sugar concentration was the highest at the hydrolysis temperature of $70^{\circ}C$. Maltooligosaccharides amounts were detected to be the highest at the hydrolysis temperature of $80^{\circ}C$ and were also, maltopentose and maltopentose were found. In the soluble solid, total dietary fiber, reducing sugar and total sugar according to the cellulase concentration, the content of hydrolysates with enzyme were higher than control, and the content of hydrolysates with enzyme was similar (6.30 and 0.69% 3,600 and 5,500 mg% respectively). The content of maltooligosaccharides was increased with the increase of enzyme concentration, and the content was similar at more than 0.6%(w/w) of enzyme concentration. The soluble solids and total dietary fiber by hydrolysis time were found to be 6.25% and 0.70%, respectively at more than 60 min. of hydrolysis. The content of reducing sugar, total sugar and maltooligosaccharides were increased with the increase of hydrolysis time, and the content was similar at more than 120min. of hydrolysis (3,800, 5,680 and 1,950 mg% respectively). Based upon these results, the byproducts of Goami are expected to be valuable as various food sources showing the highest dietary fiber and maltooligosaccharides contents by the hydrolysis at $80^{\circ}C$ for 120 min. with the addition of 0.6%(w/w) of cellulase.

Quality characteristics of distilled spirits by different nuruk-derived yeast (누룩 유래 효모의 종류에 따른 증류주의 품질 특성)

  • Lee, Ae-Ran;Kang, Sun-Hee;Kim, Hye-Ryun;Lee, Jang-Eun;Lee, Eun-Jung;Kim, Tae-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.383-389
    • /
    • 2017
  • This study aimed to select a yeast strain for optimizing the quality of distilled spirits. The brewing and distilling properties of 4 KFRI (Korea Food Research Institute) yeasts (Y88-4, Y98-4, Y172-6, Y192-4) and 2 industry yeasts (C1, C2) were compared. For investigating the possibility of using these strains on an industrial scale, diverse analytical methods were applied to assess parameters associated with distilled spirit quality such as alcohol content, pH, total acidity, and soluble solid content. After 11 days of fermentation, the alcohol strength obtained using six yeast strains reached 13.9-16.4% (v/v), while pH was 3.9-4.0, and total acid was 0.40-0.52%. To compare GC-MSD Volatile flavor components, all the distilled spirit samples were diluted to 20% (v/v) alcohol strength. Seven fusel alcohols, 26 esters, 2 acids, and 3 miscellaneous compounds were detected in the distilled spirits. Y88-4 had the most abundant volatile flavor component and scored the highest overall preference in sensory evaluation. After analyzing the various properties of yeasts, strain Y88-4 was finally selected as the best strain for producing distilled spirits.

Current Status and Perspectives in Varietal Improvement of Rice Cultivars for High-Quality and Value-Added Products (쌀 품질 고급화 및 고부가가치화를 위한 육종현황과 전망)

  • 최해춘
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.15-32
    • /
    • 2002
  • The endeavors enhancing the grain quality of high-yielding japonica rice were steadily continued during 1980s-1990s along with the self-sufficiency of rice production and the increasing demands of high-quality rices. During this time, considerably great progress and success was obtained in development of high-quality japonica cultivars and quality evaluation techniques including the elucidation of interrelationship between the physicochemical properties of rice grain and the physical or palatability components of cooked rice. In 1990s, some high-quality japonica rice cultivars and special rices adaptable for food processing such as large kernel, chalky endosperm, aromatic and colored rices were developed and its objective preference and utility was also examined by a palatability meter, rapid-visco analyzer and texture analyzer, Recently, new special rices such as extremely low-amylose dull or opaque non-glutinous endosperm mutants were developed. Also, a high-lysine rice variety was developed for higher nutritional utility. The water uptake rate and the maximum water absorption ratio showed significantly negative correlations with the K/Mg ratio and alkali digestion value(ADV) of milled rice. The rice materials showing the higher amount of hot water absorption exhibited the larger volume expansion of cooked rice. The harder rices with lower moisture content revealed the higher rate of water uptake at twenty minutes after soaking and the higher ratio of maximum water uptake under the room temperature condition. These water uptake characteristics were not associated with the protein and amylose contents of milled rice and the palatability of cooked rice. The water/rice ratio (in w/w basis) for optimum cooking was averaged to 1.52 in dry milled rices (12% wet basis) with varietal range from 1.45 to 1.61 and the expansion ratio of milled rice after proper boiling was average to 2.63(in v/v basis). The major physicochemical components of rice grain associated with the palatability of cooked rice were examined using japonica rice materials showing narrow varietal variation in grain size and shape, alkali digestibility, gel consistency, amylose and protein contents, but considerable difference in appearance and texture of cooked rice. The glossiness or gross palatability score of cooked rice were closely associated with the peak, hot paste and consistency viscosities of viscosities with year difference. The high-quality rice variety "IIpumbyeo" showed less portion of amylose on the outer layer of milled rice grain and less and slower change in iodine blue value of extracted paste during twenty minutes of boiling. This highly palatable rice also exhibited very fine net structure in outer layer and fine-spongy and well-swollen shape of gelatinized starch granules in inner layer and core of cooked rice kernel compared with the poor palatable rice through image of scanning electronic microscope. Gross sensory score of cooked rice could be estimated by multiple linear regression formula, deduced from relationship between rice quality components mentioned above and eating quality of cooked rice, with high probability of determination. The $\alpha$-amylose-iodine method was adopted for checking the varietal difference in retrogradation of cooked rice. The rice cultivars revealing the relatively slow retrogradation in aged cooked rice were IIpumbyeo, Chucheongyeo, Sasanishiki, Jinbubyeo and Koshihikari. A Tonsil-type rice, Taebaegbyeo, and a japonica cultivar, Seomjinbyeo, showed the relatively fast deterioration of cooked rice. Generally, the better rice cultivars in eating quality of cooked rice showed less retrogradation and much sponginess in cooled cooked rice. Also, the rice varieties exhibiting less retrogradation in cooled cooked rice revealed higher hot viscosity and lower cool viscosity of rice flour in amylogram. The sponginess of cooled cooked rice was closely associated with magnesium content and volume expansion of cooked rice. The hardness-changed ratio of cooked rice by cooling was negatively correlated with solids amount extracted during boiling and volume expansion of cooked rice. The major physicochemical properties of rice grain closely related to the palatability of cooked rice may be directly or indirectly associated with the retrogradation characteristics of cooked rice. The softer gel consistency and lower amylose content in milled rice revealed the higher ratio of popped rice and larger bulk density of popping. The stronger hardness of rice grain showed relatively higher ratio of popping and the more chalky or less translucent rice exhibited the lower ratio of intact popped brown rice. The potassium and magnesium contents of milled rice were negatively associated with gross score of noodle making mixed with wheat flour in half and the better rice for noodle making revealed relatively less amount of solid extraction during boiling. The more volume expansion of batters for making brown rice bread resulted the better loaf formation and more springiness in rice breed. The higher protein rices produced relatively the more moist white rice bread. The springiness of rice bread was also significantly correlated with high amylose content and hard gel consistency. The completely chalky and large grain rices showed better suitability far fermentation and brewing. The glutinous rice were classified into nine different varietal groups based on various physicochemical and structural characteristics of endosperm. There was some close associations among these grain properties and large varietal difference in suitability to various traditional food processing. Our breeding efforts on improvement of rice quality for high palatability and processing utility or value-adding products in the future should focus on not only continuous enhancement of marketing and eating qualities but also the diversification in morphological, physicochemical and nutritional characteristics of rice grain suitable for processing various value-added rice foods.ice foods.