• Title/Summary/Keyword: solid and liquid lubricants

Search Result 13, Processing Time 0.024 seconds

A Study on Friction and Wear Characteristics of Sintered W/C-35%Ni Tappets for Diesel Engine Application (디젤엔진용 소결(W/C35%Ni) 태핏의 마멸거동에 관한 연구)

  • 류병진;오세일;박맹로;양승호
    • Tribology and Lubricants
    • /
    • v.16 no.1
    • /
    • pp.33-38
    • /
    • 2000
  • Abstract- In this paper tribological characteristics of solid and liquid phase sintered W/C-35%Ni tappets were investigated. Three test methods were performed to investigate the wear and surface damage mechanism of sintered tappets. First, block-on-ring wear test was performed to investigate the wear characteristics under pure sliding condition. Second, simplified cam and tappet tests (called component wear test hereafter) were carried out to simulate the real contact history of cam and tappet. Also, after the test, contact surfaces were analyzed with scanning electron microscope to study the wear mechanism. As a final screening, engine dynamo tests were performed. Results showed that in the block on ring sliding wear test, solid phase sintered specimens showed superior wear resistance to liquid phase sintered specimens. The component wear tests and engine dynamo tests also showed the same results. Therefore, in these tests, solid phase sintered tappet material revealed superior wear resistant properties to liquid phase sintered one.

A Study on the Wear Characteristics of Molybdenum Disulphide in Lube-Oils (이류화 몰리브덴윤활유의 마모특성에 관한 연구)

  • 최웅수;한홍구;권오관
    • Tribology and Lubricants
    • /
    • v.5 no.2
    • /
    • pp.87-93
    • /
    • 1989
  • The effect of the Concentration of solid lubricant, MoS$_2$ alone and in presence of other additives, ZDDP and DEP on the wear characteristics of liquid lubricants has been studied using the Four Ball Wear tester and Falex E.P. tester. On the basis of the experimental result, it showed that the concentration of MoS$_2$ and compatibility with other additives is very cbncerned with wear performance.

The Lubricant Effect of Oxidation and Wear Products of HVOF Co-alloy T800 Powder Coating

  • Cho, Tong Yul;Yoon, Jae Hong;Kim, Kil Su;Song, Ki Oh;Youn, Suk Jo;Chun, Hui Gon;Hwang, Soon Young
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.159-163
    • /
    • 2007
  • Micron size Co-alloy 800 (T800) powder is coated on the high temperature, oxidation and corrosion resistant super alloy Inconel 718 substrate by the optimal high velocity oxy-fuel (HVOF) thermal spray coating process developed by this laboratory. For the study of durability improvement of high speed spindle operating without lubricants, friction and sliding wear behaviors of the coatings are investigated both at room and at an elevated temperature of $1000^{\circ}F(538^{\circ}C)$. Friction coefficients, wear traces and wear debris of coatings are drastically reduced compared to those of non-coated surface of Inconel 718 substrate both at room temperature and at $538^{\circ}C$. Friction coefficients and wear traces of both coated and non-coated surfaces are drastically reduced at higher temperature of $538^{\circ}C$ compared with those at room temperature. At high temperature, the brittle oxides such as CoO, $Co_{3}O_{4}$, $MoO_2$ and $MoO_3$ are formed rapidly on the sliding surfaces, and the brittle oxide phases are easily attrited by reciprocating slides at high temperature through oxidation and abrasive wear mechanisms. The brittle solid oxide particles, softens, melts and partial-melts play roles as solid and liquid lubricants reducing friction coefficient and wear. These show that the coating is highly recommendable for the durability improvement coating on the machine component surfaces vulnerable to frictional heat and wear.

Evaluation of Sliding Friction Properties of Laser Surface Texturing Dimple Pattern with DLC Coating under GaInSn Liquid Metal Lubricant (액체금속(GaInSn)윤활하에서 DLC(ta-C) 코팅된 레이저 표면 텍스쳐링 딤플패턴의 미끄럼 마찰특성평가)

  • Kwon, Gyubin;Jang, Youngjun;Chae, Younghun
    • Tribology and Lubricants
    • /
    • v.37 no.3
    • /
    • pp.106-111
    • /
    • 2021
  • There are several studies on reducing the friction that occurs on the relative sliding contact surface of moving parts under extreme environments. In particular, a solid lubricated bearing is studied to solve the tribological problem with friction reduction and durability parts using solid lubricants (lead or silver) in a vacuum atmosphere. Galinstan is mainly used as a liquid metal lubricant, but it is inevitable to have limited tribological applications owing to its high coefficient of friction. Many researchers work on surface texturing for surface modification and precision processing methods. To increase durability and low friction, DLC coating with hydrophobicity is applied on the contact surface texture. Therefore, using an untextured specimen, a dimple specimen, and a DLC-coated dimple specimen under liquid metal lubrication, this paper presents the following experimental sliding friction characteristics in the sliding friction test. 1) The average coefficient of friction of the DLC-coated dimple specimen and dimple specimen are lower compared to that of a non-patterned specimen. 2) In the DLC-coated dimple specimens, the average coefficient of friction changes according to the change in the dimple density. 3) DLC-coated dimple specimens with a density of 12.5 have the lowest average coefficient of friction under 41.6 N of normal load and 143.3 RPM.

Fabrication of $Al_2O_3/Al$ Composite Materials by Mashy State Forming and its Hot Extrusion Process (반용융가공에 의한 $Al_2O_3/Al$ 복합재료의 제조 및 열간압출공정)

  • Kang, Chung-Gil;Kang, Sung-Soo
    • Journal of Korea Foundry Society
    • /
    • v.13 no.3
    • /
    • pp.248-258
    • /
    • 1993
  • A semi-solid alloy in which solid and liquid phase are co-existing is obtained by stirring of A17075 molten metal. A semi-solid alloy is dependent on the corresponding temperature within the solid-liquid range, and the process parameters should be controlled accurately to obtain the homogeneous semisolid alloy. The fabrication possibility of fiber-reinforced aluminum alloy containing $Al_2O_3$ short fibers with vigorous agitation of short fibers were obtained by control of stirring time, solid fraction and impeller speed in extrusion billet fabrication processes. The microstructure to extrusion billet fabricated by low pressure casting was investigated for fiber dispersion state. The relationship between the extrustion force and velocity at hot extrustion, the flow strain and extrusion ratio were theoretically described. The surface defects with lubricants and without lubricant after hot extrusion were investigated. The composites materials after hot extrusion were measured by vickers hardness with extrusion ratio. It has become clear that the secondary working such as hot extrusion was very useful to obtained improved the mechanical properties of metal matrix composites.

  • PDF

Friction Reduction Properties of Evaporation Coated Petroleum and Silicone Oil Lubricants (증발 코팅법으로 증착된 광유와 실리콘 오일 윤활제의 마찰 저감 특성)

  • Yoo, Shin Sung;Kim, Dae Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.864-869
    • /
    • 2013
  • As the size of mechanical components decreases, capillary forces and surface tension become increasingly significant. A major problem in maintaining high reliability of these small components is that of large frictional forces due to capillary action and surface tension. Unlike the situation with macro-scale systems, liquid lubrication cannot be used to reduce friction of micro-scale components because of the excessive capillary and drag forces. In this work, the feasibility of using evaporation to coat a thin film of organic lubricant on a solid surface was investigated with the aim of reducing friction. Petroleum and silicone oils were used as lubricants to coat a silicon substrate. It was found that friction could be significantly reduced and, furthermore, that the effectiveness of this method was strongly dependent on the coating conditions.

Preparation and Characterization of Polymer Lubricating Bearings (고온용 폴리머 윤활 베어링의 특성 연구)

  • Han, Jong-Dae;Kim, Sang-Keun;Kim, Byung-Kwan
    • Tribology and Lubricants
    • /
    • v.24 no.4
    • /
    • pp.179-185
    • /
    • 2008
  • Microporous polymer lubricants(MPLs) are solid polymer materials containing micropores which are filled with liquid lubricants, and which are molded or formed to suit rolling bearings or other machine parts requiring lubrication. MPLs can be effectively applied to provide long-term, maintenance-free lubrication of a variety of machine elements without fully replacing of oils and greases. The application of rolling bearings packed fully with an MPL could reduce or eliminate the problems such as grease deterioration, leakage, under-lubrication caused by insertion of water or foreign matters under severe operation conditions. This paper discuss the application of MPLs for lubrication of rolling ball bearings. Two different MPLs were synthesized and the features of MPLs were tested. Characteristics of the bearings which are packed fully with synthesized MPLs were investigated using SEM, TG/DSC, extents of oil leakage, OIT, and life time test. After these preliminary tests twelve MPLs were synthesized and evaluated by measuring extents of oil leakage and OIT values. Then synthesis conditions for the optimum MPL were selected by SSRED(Six Sigma Robust Engineering Design) pro gram using extents of oil leakage and OIT values respectively. The optimum MPL by means of OIT value showed higher performance such as long life time and application at higher temperature of $140^{\circ}C$ than previous temperature of $100^{\circ}C$.

Effects of Interface Boundary Strength on Wear and Wear Transition during Sliding in Silicon Carbide Ceramics (탄화규소계 세라믹스에서 미끄럼시의 마모 및 마모천이에 미치는 계면강도의 영향)

  • Kim, Dong-Jin;Park, Seong-Khil;Ryu, Hyun;Um, Chang-Do;Cho, Seong-Jai;Kim, Seock-Sam
    • Tribology and Lubricants
    • /
    • v.11 no.4
    • /
    • pp.21-27
    • /
    • 1995
  • The effects of interface boundary strength on wear and wear transition during sliding have been investigated in silicon carbide ceramics. Three different microstructures, i.e., solid state sintered silicon carbide, liquid phase sintered silicon carbide and liquid phase sintered silicon carbide composite reinforced with TiB$_{2}$ particulates, were designed by hot pressing. Examinations of crack patterns and fracture modes indicated that interface boundaries were relatively strong between silicon carbide grains in the solid state sintered silicon carbide, intermediate in the liquid phase sintered silicon carbide and weak between silicon carbide grains and TiB$_{2}$ particles in the composite. Wear data and examinations of worn surfaces revealed that the wear behavior of these silicon carbide ceramics could be significantly affected by the interface strength. In the solid state sintered silicon carbide, the wear occurred by a grooving process. In the liquid phase sintered silicon carbide and composite, on the other hand, an abrupt transition in wear mechanism from initial grooving to grain pull-out process occurred during the test. The transition occurred significantly earlier in the composite than in the carbide.

Nanotribological Behavior of Adsorbed Water Layer on Silicon Surface (실리콘 표면에 흡착된 수분층의 나노트라이볼로지 거동)

  • 안효석;김두인;최동훈
    • Tribology and Lubricants
    • /
    • v.19 no.5
    • /
    • pp.245-250
    • /
    • 2003
  • Water is known to playa crucial role on friction of moving parts in nanoscale contact. Little is, however, known about the tribological behavior of a solid surface that is covered with water adsorption layer. The objective of this study is to investigate the nanotribological behavior of the water layer in relation to water affinity of the surface and relative humidity. This paper presents an examination of the frictional behavior of water adsorption layer as 'confined liquid film'. It is shown that the friction is inversely proportional to the hydrophilicity of surface and relative humidity. On the other hand, friction of hydrophobic surface is not influenced by relative humidity. A model is proposed for the water-mediated contact in which it is shown that the water layer between two hydrophilic surfaces with high relative humidity behaves as a lubricant.

Synthesis and Evaluation of Superhydrophobic ODA/PDMS Dip Coating on PET for Liquid-Solid Contact Electrification (액체-고체 접촉대전을 위한 PET 기판 기반 ODA/PDMS 딥 코팅 제조 및 평가)

  • Park, Sunyoung;Kang, Hyungyu;Byun, Doyoung;Cho, Dae-Hyun
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.71-76
    • /
    • 2021
  • As opposed to using fossil fuels, we need to use eco-friendly resources such as sunlight, raindrops and wind to produce electricity and combat environmental pollution. A triboelectric nanogenerator (TENG) is a device that converts mechanical energy into electricity by inducing repetitive contact and separation of two dissimilar materials. During the contact and separation processes, electron flow occurs owing to a change in electric potential of the contacting surface caused by contact electrification and electrostatic induction mechanisms. A solid-solid contact TENG is widely known, but it is possible to generate electricity via liquid-solid contact. Therefore, by designing a hydrophobic TENG, we can gather electricity from raindrop energy in a feasible manner. To fabricate the superhydrophobic surface of TENGs, we employ a dip coating technique to synthesize an octadecylamine (ODA)- and polydimethylsiloxane (PDMS)-based coating on polyethylene terephthalate (PET). The synthesized coating exhibits superhydrophobicity with a contact angle greater than 150° and generates a current of 2.2 ㎂/L while water droplets fall onto it continuously. Hence, we prepare a box-type TENG, with the ODA/PDMS coating deposited on the inside, and place a 1.5 mL water droplet into it. Resultantly, we confirm that the induced vibration causes continuous impacts between the ODA/PDMS coating and the water, generating approximately 100 pA for each impact.