• Title/Summary/Keyword: solar tracking

Search Result 449, Processing Time 0.029 seconds

Digitally Controlled Interleaving Tapped-Inductor Boost Converter for Photovoltaic Module Integrated Converters (PV MIC)

  • Lee, Jye-June;Kim, Jitae;Bae, Hyunsu;Cho, B.H.
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.74-75
    • /
    • 2010
  • As global warming due to burning fossil fuels and natural resource depletion issues have emerged, the development of renewable energy sources such as photovoltaics (PV) has been brought to recent interest. Amongst the vast efforts to harvest and convert solar energy into electricity, the module integrated converters (MIC) has become a worthy topic of research for grid-connected photovoltaic systems. Due to the required high-boosting qualities, only a restricted amount of DC/DC converter topologies can be applied to MICs. This paper investigates the possibility of a tapped-inductor boost converter as a candidate for PV MICs. A dual-inductor interleaving scheme operating slightly above the boundary of the two conduction modes (BCM) is suggested for reduction of input current ripple and minimization of component stress. A digital controller is used for implementation, assuring maximum power tracking and transfer while providing sufficient computational space for other grid connectivity applications, etc. For verification, a 200W converter is designed and simulated via computer software including component losses. High efficiency over a wide power range proves the feasibility of the proposed PV MIC system.

  • PDF

Development of Embedded Solar Tracking System using Wireless Sensor Network (무선 센서 네트워크를 이용한 내장형 태양광 추적 시스템 구현)

  • Kang, Ki-Yong;Kuh, In-Bon;Jun, Yong-Kee
    • Annual Conference of KIPS
    • /
    • 2012.04a
    • /
    • pp.14-16
    • /
    • 2012
  • 본 논문은 단일 추적모듈과 무선 센서 네트워크를 이용한 내장형 태양광 추적시스템을 제안한다. 내장형 태양광 추적시스템은 조도 변화에 따라 단일 추적모듈로부터 도출된 회전값을 무선 센서 네트워크로 발전모듈에게 전달하여 태양전지를 동일하게 회전시키는 시스템이다. 추적모듈은 조도측정부의 양단 간 조도 값을 비교하여 회전값을 도출하고 항상 태양광과 프레임이 수직이 되도록 유지한다. 발전모듈은 전달받은 회전값을 적용하여 추적모듈과 동일한 방향으로 유지함으로 발전량을 최대화한다. 테스트베드를 개발하여 추적 실험을 통해 제안된 시스템의 타당성을 검증하였다.

A PV-Module Integrated Phase Shift Full Bridge Converter for EV (태양광 모듈 통합 전기 자동차용 Phase Shift Full Bridge Converter)

  • Hwang, Yun-Kyung;Nam, Kwang-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.425-432
    • /
    • 2020
  • The phase-shifted, full-bridge (PSFB) DC-DC converter is widely used in electric vehicles (EVs) to charge a low-voltage (12 V) battery from a high-voltage battery. A Photovoltaic (PV) module-integrated PSFB converter is proposed for the EV power conversion system. The converter is useful because solar energy can be utilized to extend the driving range. The buck converter circuit is simply realized by adding one switch to the conventional PSFB converter's secondary side. For the inductor and diode, the existing components in the PSFB converter are shared. The proposed converter can charge a low-voltage battery from the PV module with maximum power point tracking. In addition, the two power sources can be used simultaneously, and efficiency is increased by reducing the circulating current, which is a problem for the conventional PSFB converter.

Long-term Stability of Perovskite Solar Cells with Inhibiting Mass Transport with Buffer Layers (물질이동 억제 버퍼층 형성을 통한 페로브스카이트 태양전지 장기 안정성 확보)

  • Bae, Mi-Seon;Jeong, Min Ji;Chang, Hyo Sik;Yang, Tae-Youl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.17-24
    • /
    • 2021
  • Perovskite solar cells (PSCs) can be fabricated through solution process economically with variable bandgap that is controlled by composition of precursor solution. Tandem cells in which PSCs combined with silicon solar cells have potential to reach high power conversion efficiency over 30%, however, lack of long-term stability of PSCs is an obstacle to commercialization. Degradation of PSCs is mainly attributed to the mass transport of halide and metal electrode materials. In order to ensure the long-term stability, the mass transport should be inhibited. In this study, we confirmed degradation behaviors due to the mass transport in PSCs and designed buffer layers with LiF and/or SnO2 to improve the long-term stability by suppressing the mass transport. Under high-temperature storage test at 85℃, PSCs without the buffer layers were degraded by forming PbI2, AgI, and the delta phase of the perovskite material, while PSCs with the buffer layers showed improved stability with keeping the original phase of the perovskite. When the LiF buffer and encapsulation were applied to PSCs, superior long-term stability on 85℃-85% RH dump heat test was achieved; efficiency drop was not observed after 200 h. It was also confirmed that 90.6% of the initial efficiency was maintained after 200 hours of maximum power tracking test under AM 1.5G-1SUN illumination. Here, we have demonstrated that the buffer layer is essential to achieve long-term stability of PSCs.

Implementation and Characteristic Analysis of DC/DC Voltage Regulator for Operation Efficiency Improvement in PV system (태양광발전의 운용효율 향상을 위한 DC/DC 전압 레귤레이터의 구현 및 특성분석)

  • Kim, Chanhyeok;Choi, Sungsik;Kang, Minkwan;Jung, Youngmun;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.201-208
    • /
    • 2017
  • Recently, the installation of photovoltaic(PV) systems has been increasing due to the worldwide interest in eco-friendly and abundant solar energy. On the other hand, a PV system has approximately 25% power loss while the energy generated from solar cells is transformed to the power coupling point through a power conversion system (DC/AC). If the output voltage of a string in the PV system is lower than the operating range of the inverter when a part of module in the string has a shadow due to weather conditions, the string is not synchronized and the whole efficiency of output power in a PV system may be reduced significantly. Therefore, to overcome this problem, this paper proposes a novel control method to compensate for the lower voltage by introducing a DC/DC voltage regulator for each string in a PV system, which adopts a concept for MPPT (Maximum Power Point Tracking) control function using the P&O algorithm and adopts constant voltage control method used in an existing inverter. This paper also implements a 2kW DC/DC voltage regulator based on the proposed algorithm and performs a variety of scenario-based experiments. From the simulation result, it was confirmed that the operation efficiency in the proposed method is improved compared to the existing method.

Robustness Examination of Tracking Performance in the Presence of Ionospheric Scintillation Using Software GPS/SBAS Receiver

  • Kondo, Shun-Ichiro;Kubo, Nobuaki;Yasuda, Akio
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.235-240
    • /
    • 2006
  • Ionospheric scintillation induces a rapid change in the amplitude and phase of radio wave signals. This is due to irregularities of electron density in the F-region of the ionosphere. It reduces the accuracy of both pseudorange and carrier phase measurements in GPS/satellite based Augmentation system (SBAS) receivers, and can cause loss of lock on the satellite signal. Scintillation is not as strong at mid-latitude regions such that positioning is not affected as much. Severe effects of scintillation occur mainly in a band approximately 20 degrees on either side of the magnetic equator and sometimes in the polar and auroral regions. Most scintillation occurs for a few hours after sunset during the peak years of the solar cycle. This paper focuses on estimation of the effects of ionospheric scintillation on GPS and SBAS signals using a software receiver. Software receivers have the advantage of flexibility over conventional receivers in examining performance. PC based receivers are especially effective in studying errors such as multipath and ionospheric scintillation. This is because it is possible to analyze IF signal data stored in host PC by the various processing algorithms. A L1 C/A software GPS receiver was developed consisting of a RF front-end module and a signal processing program on the PC. The RF front-end module consists of a down converter and a general purpose device for acquiring data. The signal processing program written in MATLAB implements signal acquisition, tracking, and pseudorange measurements. The receiver achieves standalone positioning with accuracy between 5 and 10 meters in 2drms. Typical phase locked loop (PLL) designs of GPS/SBAS receivers enable them to handle moderate amounts of scintillation. So the effects of ionospheric scintillation was estimated on the performance of GPS L1 C/A and SBAS receivers in terms of degradation of PLL accuracy considering the effect of various noise sources such as thermal noise jitter, ionospheric phase jitter and dynamic stress error.

  • PDF

Design of Power and Load Reduction Controller for a Medium-Capacity Wind Turbine (중형 풍력터빈의 출력 및 타워 하중저감 제어기 설계)

  • Kim, Kwansu;Paek, Insu;Kim, Cheol-Jin;Kim, Hyun-Gyu;Kim, Hyoung-Gil
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.6
    • /
    • pp.1-12
    • /
    • 2016
  • A control algorithm for a 100 kW wind turbine is designed in this study. The wind turbine is operating as a variable speed variable pitch (VSVP) status. Also, this wind turbine is a permanent magnet synchronous generator (PMSG) Type. For the medium capacity wind turbine considered in this study, it was found that the optimum tip speed ratios to achieve the maximum power coefficients varied with wind speeds. Therefore a commercial blade element momentum theory and multi-body dynamics based program was implemented to consider the variation of aerodynamic coefficients with respect to Reynolds numbers and to find out the power and thrust coefficients with respect tip speed ratio and blade pitch angles. In the end a basic power controller was designed for below rated, transition and above rated regions, and a load reduction algorithm was designed to reduce tower vibration by the nacelle motion. As a result, damage equivalent Load (DEL) of tower fore-aft has been reduced by 32%. From dynamic simulations in the commercial program, the controller was found to work properly as designed. Experimental validation of the control algorithm will be done in the future.

A Study on General Characteristics of Wind and Solar Power System, Automatic Tail Safety Controller and DC-DC Converter (풍력 및 태양광 발전시스템의 일반 특성과 강풍제어기 및 DC-DC컨버터에 대한 연구)

  • Choi, Jung-Hoon;Park, Sung-Jun;Moon, Chae-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.109-116
    • /
    • 2005
  • Wind power and photovoltaic(PV) systems are getting into the spotlight as substitute energy. But problem is happened stability by speed change of wind and the power output of the sun's ray. The power output amount according to velocity of wind power system. System breakdown can happen at change of sudden velocity, typhoon and night. This paper shows a automatic tail safety brake controller based on feedback control using wind velocity. The operation of automatic tail safety controller verified by manual test. PV system is a energy change system by temperature of sun's ray and cell. Maximum power point tracking(MPPT) is used in PV systems to maximize the photovoltaic array output power. In existed PV system is low output and changeable DC voltage for boost and filtering the buck-boost converter use. But, this paper established deformed DC-DC converter. Changed Buck-boost converter's unlined output current to line output current using DC-DC converter. This is effect that reduce ripple of output current. Proved through an output waveform comparison experiment. Finally, tail safety brake controller is established to wind turbine system for stability elevation and DC-DC converter is established on PV system for stability output.

다목적실용위성 2호기의 전력용량 및 태양전지 어레이 초기 설계

  • Jang, Seong-Su;Jang, Jin-Baek;Lee, Sang-Gon;Sim, Eun-Seop
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.72-83
    • /
    • 2002
  • Required power and solar array sizing of KOMPSAT-2 have been analyzed by ASTRIUM and KARI in November, 2000. There are Electrical Power Subsystem(EPS) design discrepancies between ASTRIUM and Korea Aerospace Research Institute(KARI) according to heritage program, EPS operation concepts, power source and the characteristic of the electrical boxes. To design the power system of KOMPSAT-2, ASTRIUM has used the EPS design of the CHAMP and GlobalStar program. But SSTI, TOMS-EP and KOMPSAT-1's design concepts has been used for KOMPSAT-2 EPS design by the KARI. To get the design conclusion, there are many trade-off meetings for the EPS sizing using each sides' heritage program and EPS operation concept. And the EPS design factors and approaching methods have been reviewed and discussed. In addition the EPS design results from ASTRIUM and KARI are summarized in this paper.

  • PDF

A Study on Characteristic of Hybrid PCS for Solar Power Generation Considering on a Residential Lithium Battery ESS. (가정용 리튬배터리 ESS를 고려한 태양광 발전 하이브리드 PCS 특성에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-kwon;Choi, Byung-Sang
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.1
    • /
    • pp.35-45
    • /
    • 2022
  • In this paper, we modeled the devices used easily in PV system circuits. In addition, for full operation of the photovoltaic system, a complete operation system for the DC-DC buck-boost converter and the MPPT control system was modeled and simulated to confirm good operation. we were constructed an actual system with the same conditions in the simulation and experimented. The purpose is to confirm the stable power supply through the load leveling by presenting the PCS considering ESS of photovoltaic power generation. we will do study to apply hybrid capacitors that have high energy density to the same size compared to the EDLC to DVR. As a result, we proposed a single-phase 3 kW grid-connected solar power converter.