• Title/Summary/Keyword: solar tracking

Search Result 449, Processing Time 0.024 seconds

Design and Performance Analysis of Conical Solar Concentrator

  • Na, Mun Soo;Hwang, Joon Yeal;Hwang, Seong Geun;Lee, Joo Hee;Lee, Gwi Hyun
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.21-29
    • /
    • 2018
  • Purpose: The objective of this study is to evaluate the performance of the conical solar concentrator (CSC) system, whose design is focused on increasing its collecting efficiency by determining the optimal conical angle through a theoretical study. Methods: The design and thermal performance analysis of a solar concentrator system based on a $45^{\circ}$ conical concentrator were conducted utilizing different mass flow rates. For an accurate comparison of these flow rates, three equivalent systems were tested under the same operating conditions, such as the incident direct solar radiation, and ambient and inlet temperatures. In order to minimize heat loss, the optimal double tube absorber length was selected by considering the law of reflection. A series of experiments utilizing water as operating fluid and two-axis solar tracking systems were performed under a clear or cloudless sky. Results: The analysis results of the CSC system according to varying mass flow rates showed that the collecting efficiency tended to increase as the flow rate increased. However, the collecting efficiency decreased as the flow rate increased beyond the optimal value. In order to optimize the collecting efficiency, the conical angle, which is a design factor of CSC, was selected to be $45^{\circ}$ because its use theoretically yielded a low heat loss. The collecting efficiency was observed to be lowest at 0.03 kg/s and highest at 0.06 kg/s. All efficiencies were reduced over time because of variations in ambient and inlet temperatures throughout the day. The maximum efficiency calculated at an optimum flow rate of 0.06 kg/s was 85%, which is higher than those of the other flow rates. Conclusions: It was reasonable to set the conical angle and mass flow rate to achieve the maximum CSC system efficiency in this study at $45^{\circ}$ and 0.06 kg/s, respectively.

Maximum Power Point Tracking Algorithm Development of Photovoltaic by ACM(Approximation Control Method) (ACM에 의한 태양광 발전의 최대전력점 추적 알고리즘 개발)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Jung, Byung-Jin;Kim, Do-Yeon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.215-216
    • /
    • 2008
  • This paper is proposed a approximation control method(ACM) for the maximum power of a photovoltaic system. It is designed for power systems application and utilities. The proposed Maximum Power Point Tracking(MPPT) control has the advantage to provide a new simple way to approximate the optimal or rated voltage, the optimal or rated current and maximum power rating produced by a solar panel and the photovoltaic inverter. And this straightforward method has the advantage that Pmax and $V_{op}$ can be approximated using the same variable as the dynamic model without using complicate approximations or Taylor series. This paper is proposed MPPT using AMC using weather condition of domestic moderate program technique. This paper is proposed the experimental results to verify the effectiveness of the new methods.

  • PDF

Independent MPP Tracking Method of Hybrid Solar-Wind Power Conditioning Systems Using Integrated Dual-Input Single-PWM-Cell Converter Topology

  • Thenathayalan, Daniel;Ahmed, Ashraf;Choi, Byung-Min;Park, Jeong-Hyun;Park, Joung-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.790-802
    • /
    • 2017
  • This paper proposes the modeling and control strategy to track the MPPs of hybrid PV and Wind power systems, using a new dual input boost converter. The dual input power conditioning system with an independent MPPT control scheme is introduced with minimum number of circuit elements in order to reduce the switching loss, size and cost of the system. Since the operating conditions for the PV and Wind power systems are very distinct from each other, an efficient and superior control system is required to track the MPPs of both renewable sources with the use of a simply-structured single-ended single-inductor converter. The design of Power-Conditioning System (PCS) and detail control strategy are presented in this paper. To provide independent tracking of MPPs, a variable duty-cycle control strategy is employed for the wind system and a variable frequency strategy is employed for the PV system. Finally, the proposed dual-input converter for hybrid power conditioning system is implemented and the hardware test results are presented. From the hardware experiment, it is concluded that the proposed system successfully tracks the MPPs of both of the renewable power systems independently.

Development of Neural Network Controller for Maximum Power Point Tracking of PV System (PV 시스템의 최대전력점 추적을 위한 신경회로망 제어기 개발)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.41-48
    • /
    • 2009
  • This paper presents an Neural Network(NN) controller for Maximum Power Point Tracking (MPPT) of PV supplied DC motor. A variation of solar irradiation is most important factor in the MPPT of PV system. That is nonlinear, aperiodic and complicated. NN was widely used due to easily solving a complex math problem. Proposed photovoltaic system consists of NN, DC-DC converter, DC motor and load(cf, pump). NN algorithm apply to DC-DC converter through an Adaptive control of Neural Network, calculates Converter-Chopping ratio using an Adaptive control of NN. The results of an Adaptive control of NN compared with the results of Converter-Chopping ratio which are calculated mathematical modeling and evaluate the proposed algorithm. The experimental data show that an adequacy of the algorithm was established through the compared data.

Mitigation of Low Frequency AC Ripple in Single-Phase Photovoltaic Power Conditioning Systems

  • Lee, Sang-Hoey;An, Tae-Pung;Cha, Han-Ju
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.328-333
    • /
    • 2010
  • A photovoltaic power conditioning system (PV PCS) that contains single-phase dc/ac inverters tends to draw an ac ripple current at twice the output frequency. Such a ripple current perturbs the operating points of solar cells continuously and it may reduce the efficiency of the current based maximum power point tracking technique (CMPPT). In this paper, the ripple current generation in a dc link and boost inductor is analyzed using the ac equivalent circuit of a dc/dc boost converter. A new feed-forward ripple current compensation method to incorporate a current control loop into a dc/dc converter for ripple reduction is proposed. The proposed feed-forward compensation method is verified by simulation and experimental results. These results show a 41.8 % reduction in the peak-to peak ac ripple. In addition, the dc/ac inverter control system uses an automatic voltage regulation (AVR) function to mitigate the ac ripple voltage effect in the dc link. A 3kW PV PCS prototype has been built and its experimental results are given to verify the effectiveness of the proposed method.

A Study on the MPPT Algorithm for Buoy (브이용 태양광 최대 전력 추적 알고리즘에 관한 연구)

  • Jo, Kwan-Jun;Jung, Sung-Young;Bae, Soo-Young;Lee, Ji-Young;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.588-594
    • /
    • 2009
  • The maximum power point operation point(MPPOP) of photovoltaic(PV) power generation systems changes with varying atmospheric conditions such as temperature, solar radiation. For achieving a high efficiency in PV system, it is very important for PV system to track the MPPOP correctly according to operation condition. Although the MPPT(maximum power point tracking) algorithm which applied P&O(Perturbation & Observation) or IncCnd(Incremental Conductance) algorithm tracks the MPPOP efficiently, its efficiency drops noticeably in case that the incidence angle of PV panel on buoy changes rapidly. To solve this problem, this paper proposes maximum power point searching and tracking algorithm(MPPST). The proposed algorithm set the specific area and measures the PV voltage at the same interval. The proposed algorithm have been obtained high efficiency than P&O algorithm through ocean experiment.

A Utility Interactive Photovoltaic Generation System using PWM Chopper and Current Source Inverter (PWM 쵸퍼와 전류형 인버터를 이용한 계통연계형 태양광발전시스템)

  • 이승환;성낙규;오봉환;검성남;이훈구;김용주;한경희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.323-329
    • /
    • 1998
  • In this paper, we compose of the utility interactive photovoltaic(PV) generation system with a PWM stepdown chopper and a current source inverter. The stepdown chopper is controlled by the several gate pulses (twice frequency of utility voltage, square pulse and without the chopper) of chopper part to reduce pulsation of DC current and size of DC reactor. PV current only is measured for maximum power point tracking without any influence on the variation of insolation and temperature. Therefore, we can control modulation factor of the chopper to operate at maximum power point of solar cell. And, the utility interactive photovoltaic generation system supplies an AC power to the load and the utility power system.

  • PDF

A New Solar Energy Conversion System Implemented using Single Phase Inverter (새로운 방식의 단상 인버터를 이용한 태양광 시스템 구현)

  • Hong Jeng-Pyo;Kim Tae-Hwa;Won Tae-Hyun;Kwon Soon-Jae;Hong Soon-Ill;Kim Jong-Dal
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.488-491
    • /
    • 2006
  • In this paper proposed method of maximum power point tracking using boost converter for a connected single phase inverter with photovoltaic system. The maximum power point tracking control is based on generated circuit control MOSFET switch of boost converter and single phase inverter uses predicted current control to control four IGBT's switch in full bridge. The predicted current control provide current with sinusoidal wave shape and inphase with voltage. The generation control circuit allows each photovoltaic module to operate independently at peak capacity, simply by detecting of the output power of the system. Furthermore, the generation control circuit attenuates low-frequency ripple voltage, which is caused by the full-bridge inverter, across the photovoltaic modules. Consequently, the output power of system is increased due to the increase in average power generated by the photovoltaic modules. The effectiveness of the proposed inverter system is confirmed experimentally and by means of simulation.

  • PDF

Design and Implementation of Photovoltaic Power Conditioning System using a Current-based Maximum Power Point Tracking

  • Lee, Sang-Hoey;Kim, Jae-Eon;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.606-613
    • /
    • 2010
  • This paper proposes a novel current-based maximum power point tracking (CMPPT) method for a single-phase photovoltaic power conditioning system (PV PCS) by using a modified incremental conductance method. The CMPPT method simplifies the entire control structure of the power conditioning system and uses an inherent current source characteristic of solar cell arrays. Therefore, it exhibits robust and fast response under a rapidly changing environmental condition. Digital phase locked loop technique using an all-pass filter is also introduced to detect the phase of grid voltage, as well as the peak voltage. Controllers of dc/dc boost converter, dc-link voltage, and dc/ac inverter are designed for coordinated operation. Furthermore, a current control using a pseudo synchronous d-q transformation is employed for grid current control with unity power factor. A 3 kW prototype PV PCS is built, and its experimental results are given to verify the effectiveness of the proposed control schemes.

A Photovoltaic Power Management System using a Luminance-Controlled Oscillator for USN Applications

  • Jeong, Ji-Eun;Bae, Jun-Han;Lee, Jinwoong;Lee, Caroline Sunyong;Chun, Jung-Hoon;Kwon, Kee-Won
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.48-57
    • /
    • 2013
  • This paper presents a power management system of the dye-sensitized solar cell (DSSC) for ubiquitous sensor network (USN) applications. The charge pump with a luminance-controlled oscillator regulates the load impedance of the DSSC to track the maximum power point (MPP) under various light intensities. The low drop-out regulator with a hysteresis comparator supplies intermittent power pulses that are wide enough for USN to communicate with a host transponder even under dim light conditions. With MPP tracking, approximately 50% more power is harvested over a wide range of light intensity. The power management system fabricated using $0.13{\mu}m$ CMOS technology works with DSSC to provide power pulses of $36{\mu}A$. The duration of pulses is almost constant around $80{\mu}s$ (6.5 nJ/pulse), while the pulse spacing is inversely proportional to the light intensity.