• Title/Summary/Keyword: solar radio burst

Search Result 33, Processing Time 0.027 seconds

SOLAR MICROWAVE BURSTS AND ELECTRON KINETICS

  • LEE JEONGWOO;BONG SU-CHAN;YUN HONG SIK
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.63-73
    • /
    • 2003
  • Solar flares present a number of radiative characteristics indicative of kinetic processes of high energy particles. Proper understanding of the kinetic processes, however, relies on how well we can separate the acceleration from transport characteristics. In this paper, we discuss microwave and hard X-ray bursts as a powerful tool in investigating the acceleration and transport of high energy electrons. After a brief review of the studies devoted to the kinetic process of solar flare particles, we cast them into a simple formulation which allows us to handle the injection, trap, and precipitation of flare electrons self-consistently. The formulation is then taken as a basis for interpreting and analyzing a set of impulsive and gradual bursts occurred on 2001 April 6 observed with the Owens Valley Solar Array, and HXT/WBS onboard Yohkoh satellite. We quantify the acceleration, trap, and precipitation processes during each burst in terms of relevant time scales, and also determine ambient density and magnetic field. Our result suggests that it should be the acceleration property, in particular, electron pitch angle distribution, rather than the trap condition, that is mainly responsible for the distinctive properties of the impulsive and gradual flares.

CME and radio characteristics of making large solar proton events

  • Hwang, Jung-A;Cho, Kyung-Suk;Bong, Su-Chan;Kim, Su-Jin;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.33.2-33.2
    • /
    • 2010
  • We have investigated a relationship among the solar proton events (SPEs), coronal mass ejections (CMEs) and solar flares during the solar cycle 23 (1997-2006). Using 63 SPE dataset, we found that SPE rise time, duration time, and decrease times depend on CME speed and SPE peak intensity depends on the CME earthward direction parameter as well as CME speed and x-ray flare intensity. While inspecting the relation between SPE peak intensity and the CME earthward direction parameter, we found that there are two groups: first group consists of large 6 SPEs (> 10,000 pfu at >10 MeV proton channel of GOES satellite) and shows a very good correlation (cc=0.65) between SPE peak intensity and CME earthward direction parameter. The second group has a relatively weak SPE peak intensity and shows poor correlation between SPE peak intensity and the CME earthward direction parameter (cc=0.01). By investigating characteristics of 6 SPEs in the first group, we found that there are special common conditions of the extremely large proton events (group 1); (1) all the SPEs are associated with very fast halo CME (>1400km/s), (2) they are almost located at disk region, (3) they also accompany large flare (>M7), (4) all they are preceded by another wide CMEs, and (5) they all show helmet streamer nearby the main CME. In this presentation, we will give details of the energy spectra of the 6 SPE events from the ERNE/HED aboard the Solar and Heliospheric Observatory (SOHO), and onset time comparison among the SPE, flare, type II burst, and CME.

  • PDF

MORETON WAVES RELATED TO THE SOLAR ERUPTION OCCURRED ON 3 JUNE 2012 AND 6 JULY 2012

  • ADMIRANTO, AGUSTINUS GUNAWAN;PRIYATIKANTO, RHOROM
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.57-58
    • /
    • 2015
  • In this study, we present geometrical and kinematical analysis of Moreton wave observed in 2012 June 3rd and July 6th, recorded in H-${\alpha}$ images of Global Oscillation Network Group (GONG) archive. These large-scale waves exhibit different features compared to each other. The observed wave of June 3rd has angular span of about $70^{\circ}$ with a diffuse wave front associated to NOAA active region 11496. It was found that the propagating speed of the wave at 17:53 UT is about $931{\pm}80km/s$. The broadness nature of this Moreton wave can be interpreted as the vertical extension of the wave over the chromosphere. On the other hand, the wave of July 6th associated with X1.1 class are that occurred at 23:01 UT in AR NOAA11515. From the kinematical analysis, the wave propagated with the initial velocity of about $994{\pm}70km/s$ which is in agreement with the speed of coronal shock derived from type II radio burst, v ~ 1100 km/s. These two identified waves add the inventory of the large-scale waves observed in 24th Solar Cycle.