• Title/Summary/Keyword: solar plasma

Search Result 355, Processing Time 0.032 seconds

Purification of Metallurgical Grade Silicon by Plasma Torch and E-beam Treatment (플라즈마 토치와 전자빔을 이용한 금속급 실리콘 정제)

  • Eum, Jung-Hyun;Nahm, Sahn;Hwang, Kwang-Taek;Kim, Kyung-Ja;Choi, Kyoon
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.618-622
    • /
    • 2010
  • Cost-effective purification methods of silicon were carried out in order to replace the conventional Siemens method for solar grade silicon. Firstly, acid leaching which is a hydrometallurgical process was preceded with grinded silicon powders of metallurgical grade (~99% purity) to remove metallic impurities. Then, plasma treatments were performed with the leached silicon powders of 99.94% purity by argon plasma at 30 kW power under atmospheric pressure. Plasma treatment was specifically efficient for removing Zr, Y, and P but not for Al and B. Another purification step by EB treatment was also studied for the 99.92% silicon lump which resulted in the fast removal of boron and aluminum. That means the two methods are effective alternative tools for removing the doping elements like boron and phosphor.

저온 증착 Nano-Crystalline TCO

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.6-6
    • /
    • 2010
  • Indium Tin Oxide (ITO)를 포함한 Transparent Conduction Oxide (TCO)는 LCD, OLED와 같은 Display, 그리고 Solar Cell 등 광신호와 전기신호간 변환이 필요한 모든 Device에 반드시 필요한 핵심 물질로, 특히 고특성 Display의 투명전극에서 요청되는 95% 이상의 투과도와 $15\;{\Omega}/{\square}$ 이하의 면저항 특성을 동시에 만족할 수 있는 기술은 현재까지 Plasma Sputtering 공정으로 $160^{\circ}C$ 이상에서 증착된 ITO 박막이 유일하다. 그러나, 최근 차세대 기술로서 Plastic Film을 기반으로 하는 Flexible Display 및 Flexible Solar Cell 구현에 대한 요구가 급증하면서, Plastic Film 기판위에 Plasma Damage이 없이 상온에 가까운 저온 ($100^{\circ}C$ 이하)에서 특성이 우수한 ITO 투명전극을 형성 할 수 있는 기술의 확보가 중요한 현안이 되고 있다. 지난 10년 동안 $100^{\circ}C$이하 저온에서 고특성의 ITO 또는 TCO 박막을 얻기위한 다양한 연구와 구체적인 공정이 활발히 연구되어 왔으나, ITO의 결정화 온도 (통상 $150{\sim}180^{\circ}C$)이하에서 증착된 ITO박막은 비정질 상태의 물성적 특성을 보여 원하는 전기적, 광학적 특성확보가 어려웠다. 본 논문에선 기본적으로 절연체 특성을 가져야 하는 산화물인 TCO가 반도체 또는 도체의 물리적 특성을 보여주는 기본원리의 고찰을 토대로, 재료학적 특성상 Crystalline 구조를 보여야 하는 ITO (Complex Cubic Bixbyte Structure)가 Plasma Sputtering 공정으로 저온에서 증착될 때 비정질 구조를 갖게 되는 원인을 규명하고, 이를 바탕으로 저온에서 증착된 ITO가 Crystalline 구조를 유지 할 수 있게 하고, Stress Control에 유리한 Nano-Crystalline 박막을 형성하면서 Crystallinity를 임의로 조절 할 수 있는 새로운 기술인 Magnetic Field Shielding Sputtering (MFSS) 공정과 최근 성과를 소개한다. 한편, 또 다른 새로운 저온 TCO 박막형성 기술로서, 유기반도체와 같은 Process Damage에 매우 취약한 유기물 위에 Plasma Damage 없이 TCO 박막을 직접 형성할 수 있는 Neutral Beam Assisted Sputtering (NBAS) 기술의 원리를 설명하고, 본 공정을 적용한 Top Emission OLED 소자의 결과를 소개한다. 또한, 고온공정이 수반되는 Solar Cell용 투명전극의 경우, 통상의 TCO박막이 고온공정을 거치면서 전기적 특성이 열화되는 원인을 규명하고, 이에 대한 근본적 해결 방법으로 ITO 박막의 Dopant인 Tin (Sn) 원자의 활성화를 증가시킨 Inductively Coupled Plasma Assisted DC Magnetron Sputtering (ICPDMS)의 원리와 박막의 물성적 특성과 내열 특성을 소개한다.

  • PDF

Connection of Blobs along Post-CME Ray and EUV Flares

  • Kim, Yoojung;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.82.1-82.1
    • /
    • 2017
  • After a coronal mass ejection occur, plasma blobs are often observed along the post-CME ray. Searching for features related to the plasma blobs would be important in understanding their origin. We investigated the morphology of solar flares at EUV wavelengths, around the estimated times when blobs were formed. We focused on three events - 2013 September 21 and 22, 2015 March 7 and 8, and 2017 July 13 and 14 - observed by Atmospheric Imaging Assembly (AIA) aboard Solar Dynamic Observatory (SDO). Around the blob ejection times on 2013 September 21 and 22 and 2017 July 13 and14, we found regions with recurrent events of pronounced flux increase in EUV images. Around those of 2015 March 7 and 8, however, we could not observe such recurrent flux increase. This illustrates that even though blob ejections along different post-CME rays look similar in the high corona, the assocated features in the low corona may differ. We conclude that magnetic morphology and CME triggering process should be carefully examined in order to classify plasma blobs by their nature.

  • PDF

Improvement of Si solar cell efficiency by using surface treatments on the antireflection coating layers and electrodes

  • Yang, Cheng;Ryu, Seung-Heon;Yoo, Won-Jong;Kim, Dong-Ho;Kim, Teak
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.202-203
    • /
    • 2009
  • Plasma etching was studied to obtain high-efficiency Si solar cells. SiN nanoparticles were observed upon the plasma treatment using SF6 gas. The mechanism of the nanoparticles formation has been studied. A net increase in the current density (Jsc) of the cells of $1.7mA/cm^2$ and in the conversion efficiency ($\eta$) of 2.1% is obtained after the plasma treatment for 10s, thanks to the significant decrease of reflection in the shorter wavelength range.

  • PDF

Development of Ballooning Instabilities in the Solar Atmosphere

  • Jun, Hong-Dal;Choe, G.S.;Kim, Sun-Jung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.84.2-84.2
    • /
    • 2011
  • A numerical simulation study of the solar coronal plasma reveals that a ballooning instability can develop in the course of flux rope merging. When magnetic field lines from different flux ropes reconnect, a new field line connecting farther footpoints is generated. Since the field line length abruptly increases, the field line expands outward. If the plasma beta is low, this expansion takes place more or less evenly over the whole field line. If, on the other hand, the plasma beta is high enough somewhere in this field line, the outward expansion is not even, but is localized as in a bulging balloon. This ballooning section of the magnetic field penetrates out of the overlying field, and eventually the originally underlying field and the overlying field come to interchange their apex positions. This process may explain how a field structure that has stably been confined by an overlying field can occasionally show a localized eruptive behavior.

  • PDF

Photovoltaic Performance of Crystalline Silicon Recovered from Solar Cell Using Various Chemical Concentrations in a Multi-Stage Process (습식 화학 공정에 의한 태양전지로부터 고순도 실리콘 회수 및 이를 이용한 태양전지 재제조)

  • Noh, Min-Ho;Lee, Jun-Kyu;Ahn, Young-Soo;Yeo, Jeong-Gu;Lee, Jin-Seok;Kang, Gi-Hwan;Cho, Churl-Hee
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.697-702
    • /
    • 2019
  • In this study, using a wet chemical process, we evaluate the effectiveness of different solution concentrations in removing layers from a solar cell, which is necessary for recovery of high-purity silicon. A 4-step wet etching process is applied to a 6-inch back surface field(BSF) solar cell. The metal electrode is removed in the first and second steps of the process, and the anti-reflection coating(ARC) is removed in the third step. In the fourth step, high purity silicon is recovered by simultaneously removing the emitter and the BSF layer from the solar cell. It is confirmed by inductively coupled plasma mass spectroscopy(ICP-MS) and secondary ion mass spectroscopy(SIMS) analyses that the effectiveness of layer removal increases with increasing chemical concentrations. The purity of silicon recovered through the process, using the optimal concentration for each process, is analyzed using inductively coupled plasma atomic emission spectroscopy(ICP-AES). In addition, the silicon wafer is recovered through optimum etching conditions for silicon recovery, and the solar cell is remanufactured using this recovered silicon wafer. The efficiency of the remanufactured solar cell is very similar to that of a commercial wafer-based solar cell, and sufficient for use in the PV industry.

Influence of O2-Plasma Treatment on the Thin Films of H2 Post-Treated BZO (ZnO:B) (수소 플라즈마 처리된 BZO 박막에 산소 플라즈마의 재처리 조건에 따른 BZO 박막 특성)

  • Yoo, H.J.;Son, C.G;Yoo, J.H.;Park, C.K.;Kim, J.S.;Park, S.G.;Kang, H.D.;Choi, E.H.;Cho, G.S.;Kwon, G.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.275-280
    • /
    • 2010
  • The influence of $O_2$-plasma treatment on $H_2$ post-treated BZO (ZnO:B) thin film using MOCVD (Metal-Organic Chemical Vapor Deposition) are investigated. An $O_2$-plasma treatment of the $H_2$ post-treated BZO thin films resulted in XRD peak of (100), (101) and (110). Also, electrical properties resulted in an increase in sheet resistance and work function. The weighted optical transmittance and haze at 300~1,100 nm of BZO thin films with $O_2$-plasma treatment on the $H_2$ post-treatment show approximately 86% and 15%, respectively.

Electrical Properties of Boron and Phosphorus Doped μc-Si:H Films using Inductively Coupled Plasma Chemical Vapor Deposition Method for Solar Cell Applications

  • Jeong, Chae-Hwan;Jeon, Min-Sung;Koichi, Kamisako
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.28-32
    • /
    • 2008
  • Hydrogenated microcrystalline silicon(${\mu}c$-Si:H) films were prepared using inductively coupled plasma chemical vapor deposition(ICP-CVD) method, electrical and optical properties of these films were studied as a function of silane concentration. And then, effect of $PH_3\;and\;B_2H_6$ addition on their electrical properties was also investigated for solar cell application. Characterization of these films from X-ray diffraction revealed that the conductive film exists in microcrystalline phase embedded in an amorphous network. At $PH_3/SiH_4$ gas ratio of $0.9{\times}10^{-3}$, dark conductivity has a maximum value of ${\sim}18.5S/cm$ and optical bandgap also a maximum value of ${\sim}2.39eV$. Boron-doped ${\mu}c$-Si:H films, satisfied with p-layer of solar cell, could be obtained at ${\sim}10^{-2}\;of\;B_2H_6/SiH_4$.