• Title/Summary/Keyword: solar photovoltaic systems

Search Result 402, Processing Time 0.026 seconds

A Study on the Influence to Solar Radiation by Changing the Azimuth and Tilt of a Photovoltaic Array (태양광어레이 방위각 및 경사각 변화에 따른 일사량 영향분석에 관한 연구)

  • Choi, Young-Kwan;Lee, Nam-Hyung;Kim, Kern-Joong;Cho, Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.712-716
    • /
    • 2013
  • In solar generation, the PV array's azimuth is headed due south and the tilt is generally $33^{\circ}$ in order to acquire maximum generation. However, when installed in a site where there are buildings or other facilities, the azimuth and tilt are adjusted. Yet, when the azimuth and tilt are deviated from due south and $33^{\circ}$, the generation quantity is decreased substantially and currently a method to estimate the decreasing proportion is unavailable. Therefore, in this thesis, an equation on the "change ratio of solar radiation due to the changes in tilt and azimuth" was deduced by utilizing empirical data on the amount of solar radiation received according to the changes of tilt and azimuth and Interpolation. By using this equation, the decreasing proportion of generating quantity due to the installation methods of PV system can be estimated, therefore, it can be usefully utilized when designing and going through feasibility studies for development of solar generation systems.

A Study on SSDP protocol based IoT / IoL Device Discovery Algorithm for Energy Harvesting Interworking Smart Home

  • Lee, Jonghyeok;Han, Jungdo;Cha, Jaesang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.7-12
    • /
    • 2018
  • The spread of IoT (Internet of Things) technology that connects objects based on wired / wireless networks is accelerating, and IoT-based smart home technology that constitutes a super connected network connecting sensors and home appliances existing inside and outside the home is getting popular. In addition, demand for alternative energy technologies such as photovoltaic power generation is rapidly increasing due to rapid increase of consumption of energy resources. Recently, small solar power systems for general households as well as large solar power systems for installation in large buildings are being introduced, but they are effectively implemented due to limitations of small solar panels and lack of power management technology. In this paper, we have studied smart home structure and IoT / IoL device discovery algorithm for energy harvesting system based on photovoltaic power generation, It is possible to construct an efficient smart home system for device control.

Novel Control of a Modular Multilevel Converter for Photovoltaic Applications

  • Shadlu, Milad Samady
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.103-110
    • /
    • 2017
  • The number of applications of solar photovoltaic (PV) systems in power generation grids has increased in the last decade because of their ability to generate efficient and reliable power in a variety of low installation in domestic applications. Various PV converter topologies have therefore emerged, among which the modular multilevel converter (MMC) is very attractive due to its modularity and transformerless features. The modeling and control of the MMC has become an interesting issue due to the extremely large expansion of PV power plants at the residential scale and due to the power quality requirement of this application. This paper proposes a novel control method of MMC which is used to directly integrate the photovoltaic arrays with the power grid. Traditionally, a closed loop control has been used, although circulating current control and capacitors voltage balancing in each individual leg have remained unsolved problem. In this paper, the integration of model predictive control (MPC) and traditional closed loop control is proposed to control the MMC structure in a PV grid tied mode. Simulation results demonstrate the efficiency and effectiveness of the proposed control model.

Evaluation of a FPGA controlled distributed PV system under partial shading condition

  • Chao, Ru-Min;Ko, Shih-Hung;Chen, Po-Lung
    • Advances in Energy Research
    • /
    • v.1 no.2
    • /
    • pp.97-106
    • /
    • 2013
  • This study designs and tests a photovoltaic system with distributed maximum power point tracking (DMPPT) methodology using a field programmable gate array (FPGA) controller. Each solar panel in the distributed PV system is equipped with a newly designed DC/DC converter and the panel's voltage output is regulated by a FPGA controller using PI control. Power from each solar panel on the system is optimized by another controller where the quadratic maximization MPPT algorithm is used to ensure the panel's output power is always maximized. Experiments are carried out at atmospheric insolation with partial shading conditions using 4 amorphous silicon thin film solar panels of 2 different grades fabricated by Chi-Mei Energy. It is found that distributed MPPT requires only 100ms to find the maximum power point of the system. Compared with the traditional centralized PV (CPV) system, the distributed PV (DPV) system harvests more than 4% of solar energy in atmospheric weather condition, and 22% in average under 19% partial shading of one solar panel in the system. Test results for a 1.84 kW rated system composed by 8 poly-Si PV panels using another DC/DC converter design also confirm that the proposed system can be easily implemented into a larger PV power system. Additionally, the use of NI sbRIO-9642 FPGA-based controller is capable of controlling over 16 sets of PV modules, and a number of controllers can cooperate via the network if needed.

TMC (Tracker Motion Controller) Using Sensors and GPS Implementation and Performance Analysis (센서와 GPS를 이용한 TMC의 구현 및 성능 분석)

  • Ko, Jae-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.828-834
    • /
    • 2013
  • In this paper, TMC (Tracker Motion Controller) as one of the many research methods for condensing efficiency improvements can be condensed into efficient solar system configuration to improve the power generation efficiency of the castle with Concentrated solar silicon and photovoltaic systems (CPV)experiments using PV systems. Microprocessor used on the solar system, tracing the development of solar altitude and latitude of each is calculated in real time. Also accept the value from the sensor, motor control and communication with the central control system by calculating the value of the current position of the sun, there is a growing burden on the applicability. Through the way the program is appropriate for solar power systems and sensors hybrid-type algorithm was implemented in the ARM core with built-in TMC, Concentrated CPV system compared to the existing PV systems, through the implementation of the TMC in the country's power generation efficiency compared and analyzed. Sensor method using existing experimental results Concentrated solar power systems to communicate the value of GPS location tracking method hybrid solar horizons in the coordinate system of the sun's azimuth and elevation angles calculated by the program in the calculations of astronomy through experimental resultslook clear day at high solar irradiation were shown to have a large difference. Stopped after a certain period of time, the sun appears in the blind spot of the sensor, the sensor error that can occur from climate change, however, do not have a cloudy and clear day solar radiation sensor does not keep track of the position of the sun, rather than the sensor of excellence could be found. It is expected that research is constantly needed for the system with ongoing research for development of solar cell efficiency increases to reduce the production cost of power generation, high efficiency condensing type according to the change of climate with the optimal development of the ability TMC.

Installation and Performance Evaluation of 100kWp PV System in Tibet (중국 티베트지역의 100kWp급 태양광발전시스템 실증연구)

  • Kim Seok-Ki;Yun Jae-Ho;Lee Jeong-Chul;Ahn Se-Jin;Yoon Kyung-Hoon;Song Jin-Soo
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.16-22
    • /
    • 2006
  • This paper present the performance evaluation of PV systems installed at Tibet area of China in order to identity the key factors that determines system operation at a severe climate conditions and promote the cooperation of PV technology between Korea and China. The installed systems consist of 100kW on-grid connected PV systems, BOS(balance of systems), data acquisition and transmission equipments. The Korea side supplied the solar cell, BOS like as inverter, control box and monitoring system. And the Chinese side assembled solar module, constructed site and built control house. It has been shown that the average radiation per monthly from Tibet is 1.5 times larger than that from Mokpo. Also, radiation time from Tibet is 2hour higher than that from Korea.

  • PDF

Implementation of a Stand-alone Photovoltaic Pumping System with Maximum Power Point Tracking

  • Zhengming Zhao;Kunlun Chen;Liqiang Yuan
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.635-638
    • /
    • 2001
  • Photovoltaic (PV) pumping systems with maximum power point tracking (MPPT) technique aims at obtaining the highest possible power to the pump under various insolation and temperature, thus overcomes the mismatch between the photovoltaic panel and the pumping load. A simple method of tracking the maximum power points and forcing the system to operate close to these points is presented in this paper. The MC68HC908GP32 micro control unit (MCU) is employed to implement the proposed MPPT controller. Experimental results will also show the performances of the photovoltaic pumping system with the MPPT technique.

  • PDF

I-V Characteristics According to Temperature for Photovoltaic Systems (태양광 발전시스템의 온도에 따른 전압-전류 특성)

  • Hwang, Jun-Won;Lee, Ying;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.183-185
    • /
    • 2009
  • In this thesis, output voltage, current and power of solar module were classified by irradiation and module temperature from data of overall operating characteristics collected for one year in order to manage efficient photovoltaic generation system and deliver maximum power. In addition, from these data, correlations between irradiation, module temperature of photovoltaic cell and amount of power given by photovoltaic cell was quantitatively examined to deduce optimization of the design and construction of photovoltaic generation system. The results of this thesis can be summarized as follows. As I-Y characteristics according to a temperature range of 10$\sim$50[], the area of I-V characteristics were increased with an increase in temperature. Since this area corresponds to the power, output power is thought to have increased with temperature.

  • PDF

Output Power Characteristics According to Temperature for Photovoltaic Systems (태양광 발전시스템의 온도에 따른 출력전력 특성)

  • Park, Chul-Woong;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.186-188
    • /
    • 2009
  • In this thesis, output voltage, current and power of solar module were classified by irradiation and module temperature from data of overall operating characteristics collected for one year in order to manage efficient photovoltaic generation system and deliver maximum power. In addition, from these data, correlations between irradiation, module temperature of photovoltaic cell and amount of power given by photovoltaic cell was quantitatively examined to deduce optimization of the design and construction of photovoltaic generation system. The results of this thesis can be summarized as follows. As output power characteristics according to a temperature range of 10$\sim$50[], output power was increased with an increase in temperature. Since output power increases with temperature increase, the result corresponds well to the related equation on temperature and output power.

  • PDF

Electric Output Characteristics According to Irradiation for Photovoltaic Systems (태양광 발전시스템의 일사량에 따른 출력 특성)

  • Cho, Jae-Chul;Choi, Yong-Sung;Kim, Hyang-Kon;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.189-191
    • /
    • 2009
  • In this thesis, output voltage, current and power of solar module were classified by irradiation and module temperature from data of overall operating characteristics collected for one year in order to manage efficient photovoltaic generation system and deliver maximum power. In addition, from these data, correlations between irradiation, module temperature of photovoltaic cell and amount of power given by photovoltaic cell was quantitatively examined to deduce optimization of the design and construction of photovoltaic generation system. The results of this thesis can be summarized as follows. As output power characteristics according to a irradiation range of $100{\sim}900[W/m^2]$, output power was increased with increasing irradiation. This result corresponds well to the related equation on irradiation and output power.

  • PDF