• Title/Summary/Keyword: solar energy gate

Search Result 24, Processing Time 0.028 seconds

Application of Solar Energy System for Agricutular Facility (농업용 수리시설의 태양광 시스템 적용)

  • Chung, Kwang-Kun;Lee, Kwang-Ya;Kim, Hea-Do
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1964-1969
    • /
    • 2006
  • In order to solve the problem of the existing gate it developed the solar energy gate. The solar energy gate quotient a friction force from the area contact which will call improved with line contact and it diminished. Because of the result, The operation power of the gate came to be small and the small-sized of the motor was possible. From the small-sized of the motor, the solar energy system introduction was possible and the expense for the production establishment of the gate was diminished. From KRC in 2005 demonstration it establishes the solar energy gate in nationwide 50 places and characteristic the monitoring efficiently.

  • PDF

Electric-field induced si-graphene heterostructure solar cell using top gate

  • Won, Ui-Yeon;Yu, U-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.287.2-287.2
    • /
    • 2016
  • Silicon has considerably good characteristics on electron, hole mobility and its price. With 2-D sinlge-layer Graphene/n-Si heterojunction solar cell shows that in one sun condition exhibit power conversion efficiency(PCE) of 10.1%. This photovoltaic effect was achieved by applying gate voltage to the Schottky junction of the heterostructure solar cell. Energy band diagram shows that Schottky barrier between Si and graphene can be adjust by the external electric field. because of the fermi level of the graphene can be changed by external gate voltage, we can control the Schottkky barrier of the heterostructure solar cell. The ratio between generated power of solar cell and consumption electrical power is remarkable. Since we use the graphene as the top gate electrode, most of the sun light can penetrate into the active area.

  • PDF

Pilot Project of Solar Energy Flood Gate (태양광 전동수문 시범사업)

  • Lee, Jong-Nam;Chung, Kwang-Kun;Lee, Kwang-Ya;Kim, Hea-Do
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.193-198
    • /
    • 2005
  • The solar energy floodgate which discusses will minimize a quotient bringing up for discussion friction resistance and it will do to write a disturbance power, with the base which will reach it will be able to use the solar power unit in order. It is a plan which to magnification supply the practicality and will give proof will the effort with the irrigation facility of the farming village. Magnification supply of the solar energy floodgate which it sees hazard the stack supervisor and the possibility the use against the farmer and the easy frost does the monitoring against and the work which it complements is necessary.

  • PDF

Evaluation of a FPGA controlled distributed PV system under partial shading condition

  • Chao, Ru-Min;Ko, Shih-Hung;Chen, Po-Lung
    • Advances in Energy Research
    • /
    • v.1 no.2
    • /
    • pp.97-106
    • /
    • 2013
  • This study designs and tests a photovoltaic system with distributed maximum power point tracking (DMPPT) methodology using a field programmable gate array (FPGA) controller. Each solar panel in the distributed PV system is equipped with a newly designed DC/DC converter and the panel's voltage output is regulated by a FPGA controller using PI control. Power from each solar panel on the system is optimized by another controller where the quadratic maximization MPPT algorithm is used to ensure the panel's output power is always maximized. Experiments are carried out at atmospheric insolation with partial shading conditions using 4 amorphous silicon thin film solar panels of 2 different grades fabricated by Chi-Mei Energy. It is found that distributed MPPT requires only 100ms to find the maximum power point of the system. Compared with the traditional centralized PV (CPV) system, the distributed PV (DPV) system harvests more than 4% of solar energy in atmospheric weather condition, and 22% in average under 19% partial shading of one solar panel in the system. Test results for a 1.84 kW rated system composed by 8 poly-Si PV panels using another DC/DC converter design also confirm that the proposed system can be easily implemented into a larger PV power system. Additionally, the use of NI sbRIO-9642 FPGA-based controller is capable of controlling over 16 sets of PV modules, and a number of controllers can cooperate via the network if needed.

Consideration of CCD Gate Structure in the Determination of the Point Spread Function of Yohkoh Soft X-Ray Telescope (SXT)

  • Shin, Jun-Ho;Sakurai, Takashi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.93.2-93.2
    • /
    • 2012
  • Point Spread Function (PSF) is one of the most important optical characteristics for describing the performance of a telescope. And a concept of subpixelization is inevitable in evaluating the undersampled PSF (Shin and Sakurai 2009). Then, the internal structure of Yohkoh SXT CCD pixel is not uniform: For the top half of pixel area, the X-ray should pass a so-called gate structure where the charges are transferred to an output amplifier. This gate structure shows energy-dependent sensitivity (Tsuneta et al. 1991). For example, for Al-K (8.34 A) X-ray emission, the transmission of the polysilicon gate is about 0.9. Also, for the peak coronal response of the SXT thin filters, around 17 angstrom (0.729 keV), the transmission of the gate is about 0.6, falling off sharply towards longer wavelengths. It should be noted that this spectrally dependent non-uniform response of each CCD pixel will certainly have a noticeable effect on the properties of the PSF at longer wavelengths. Therefore, especially for analyzing the undersampled PSF of low energy source, a careful consideration of non-uniform internal pixel structure is required in determining the shape of the PSF core. The details on the effect of gate structure will be introduced in our presentation.

  • PDF

Technology of selective absorber coatings on solar collectors using black chromium+3 sulfate acid on substrates (흑색 황산3가크롬을 이용한 태양열 흡열판 선택흡수막 도금기술)

  • Ohm, Tae-In;Yeo, Woon-Tack;Kim, Dong-Chan
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.27-35
    • /
    • 2013
  • One of the most important factors that have a large influence on performance of the solar water heater system is performance of the solar collector, more detailedly, coating technology on the surface of the solar collector, which can provide high solar absorptance and low emittance. The core of the coating technology is to coat solar selective surfaces. In this study, various performance experiments are carried out using $Cr_2(SO_4)_3{\cdot}15H_2O$ coating technology. Here, IGBT(Insulated Gate Bipolar Transistor) of 5000A-15V was used as the surface processing rectifier which can stably output power and also can control voltage and current. The plating solution mainly contains black chrome$^{+3}$ concentration, H-y Conductivity, N-u Complex, NF Additive and NC-2 Wetter. Before applying the black chrome coating on the copper plate, optimal conditions are provided by using various preprocessing methods such as removal of fat, activation, electrolytic polishing, nickel strike, copper sulfate plating and bright neckel plating, and then the automatic continuous coating experiment are performed according to plating time and cathode current density. In the experiment, after the removal of fat, chemical polishing, nickel strike and activation processes as the preprocessing methods, the black chrome coating was performed in a plate solution temperature of $28^{\circ}C$ and a cathode current density of $18A/cm^2$ for 90 seconds. The thickness of chrome and nickel on the coated plate is $0.389{\mu}m$, $159{\mu}m$ respectively. As a result of the coating experiment, it showed the most excellent performance having a high solar absorptance of 98% and a low emittance of $5{\pm}1%$ when the black chrome surface had a thickness of $0.398{\mu}m$.

Optoelectric properties of gate-tunable n-MoS2/n-WSe2 heterojunction with proper electrode metals

  • Lee, Seom-Gyun;Park, Min-Ji;Yu, Gyeong-Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.332.2-332.2
    • /
    • 2016
  • Two dimensional transition-metal dichalcogenides (TMDs) semiconductors are attractive materials for optoelectric devices because of their direct energy bandgap and transparency. To investigate the feasibility of transparent p-n junctions, we have fabricated a p-n heterojunction consisting of p-type WSe2 and n-type MoS2 flakes since WSe2 and MoS2 with proper electrode metals exhibit p-type and n-type behaviors, respectively. These heterojunctions exhibits gate-tunable rectifying behaviors and photovoltaic effects (ECE ~ 0.2%) indicating that p-n junctions were formed. In addition, photocurrent and photovoltaic effects were observed under light illumination, which were dependent on the gate voltage. In addition, the photocurrent mapping images indicate that the photovoltaic effects comes from the junction area. Possible origins of gate-tunability are discussed.

  • PDF

Development of Reservoir Flood Gate (저수지 사통수문 개발)

  • Chung, Kwang-Kun;Lee, Kwang-Ya;Kim, Hea-Do;Lee, Jong-Nam
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.207-212
    • /
    • 2005
  • It was convenient and the maintenance to do ease, to tilt the effort of one irrigation facility modernization by used to solar energy of reservoir flood gate and to reach and to lead in order to prepare one hand insufficiently it follows in leaving farming of the farming village and become older in age of the irrigation facility manager, it discussed one result. The reservoir flood gate which currently is developed but as improving the circular floodgate rain it does not measure the flow which is accurate is supplied from the reservoir it could not.

  • PDF

Study on Industrial Inverters for Driving High-efficiency High-voltage Field-stop IGBT Optimization Design (산업용 인버터 구동을 위한 고효율 고내압 Field-stop IGBT 최적화 설계에 관한 연구)

  • Lee, Myung Hwan;Kim, Bum June;Jung, Eun Sik;Jung, Hun Suk;Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.257-263
    • /
    • 2013
  • In this paper, Solar, Wind, fuel cell used in a Power conversion devices and industrial inverter motor to increase the efficiency of energy consumption, which is a core part of high-efficiency, high-voltage Trench Gate Field Stop IGBT was studied. For this purpose Planar type NPT IGBT and Planar type Field Stop IGBT have designed a basic structure designed to Trench Gate Field Stop IGBT based on the completed structure by analyzing the energy consumption of electrical characteristics, efficiency is a key part, high-efficiency and high-voltage inverter for industry regarding the optimization design for Trench Gate Field Stop IGBT.

Utilization of Active Diodes in Self-powered Sensorless Three-phase Boost-rectifiers for Energy Harvesting Applications

  • Tapia-Hernandez, Alejandro;Ponce-Silva, Mario;Olivares-Peregrino, Victor Hugo;Valdez-Resendiz, Jesus Elias;Hernandez-Gonzalez, Leobardo
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1117-1126
    • /
    • 2017
  • The main contribution of this paper is the use of sensorless active diodes to generate the gate signals for a three-phase boost-rectifier with a self-powered control scheme. The sensorless operation is achieved making use of the gate control signals generated by the active diode schemes on each of the switching devices using a pulse width half-controlled boost rectifier modulation technique (PWM-HCBR). The proposed scheme synchronizes the gate control signals with a three phase voltage supply. Autonomous operation is obtained making use of the output DC bus to feed the control circuitry, the active diodes and the driver circuitry. The three-phase boost-rectifier is supplied by a three-phase permanent magnet electric generator powered by a solar concentrator dish with variable voltage and variable frequency conditions. Experimental results report an efficiency of up to 94.6% for 25 W and an input of 3.6 V peak per phase with 450.