• 제목/요약/키워드: solar electricity

검색결과 483건 처리시간 0.027초

전력 Peak Cut를 위한 Solar 에어콘 개발 (Solar Air Conditionner for Electricity Peak Cut)

  • 유권종;송진수;강기환;황인호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.1045-1047
    • /
    • 1992
  • Photovoltaics is considered to be one of the most promising technologies which can greatly contribute to future energy supply because of a large, secure, essentially inexhaustible and broadly available resource - sunlight. However, recent progresses in photovoltaics make also possible its short-term practical application in some areas. Among them the solar air conditionner powered by photovoltaic system attracts considerable interest due to its main advantage which consists in the reduction of drastically increasing electricity peak load in summer season. In this review paper our current study on the solar air conditionner will be briefly summarized.

  • PDF

Opportunities and challenges of solar energy application in energy sector of Sri Lanka

  • De Silva, Kaluthanthiri Patabendi Sepali Darshika
    • 한국태양광발전학회지
    • /
    • 제6권1호
    • /
    • pp.45-55
    • /
    • 2020
  • Although Sri Lanka's current carbon footprint is much less compared to other developing countries, the country's existing and planned economic developments have raised the demand for power, resulting an increased GHG (Greenhouse gas) emission. GHG in Sri Lanka is emitted mostly by the burning of fossil fuels for energy generation including transport. However, the most effective way of reducing GHG emissions from the energy sector is to use renewable energy sources. Solar is in the top list of renewable resources that has much potential to use to meet the demand for electricity generation in the country. The purpose of this study is to evaluate the current status of solar power generation and opportunities, barriers for implementing the programs of solar energy in Sri Lanka. Literature reviews mainly used as the primary tool for this study. Sri Lankan government had set the targets for adding 200 MW to the national grid by 2020, and to increase up to 1000 MW by 2025 of solar electricity. To achieve these targets the prevailing barriers have to be considered.

태양에너지를 이용한 열-전기 동시생산을 위한 PV-Solarwall 단위모듈 성능평가 연구 (The Performance Evaluation Study of PV-Solarwall Unit Module Solar Thermal-Electric Energy)

  • 김용환;조일식;이의준;현명택;강은철
    • 한국태양에너지학회 논문집
    • /
    • 제25권3호
    • /
    • pp.69-75
    • /
    • 2005
  • The PV-Solarwall system has been introduced as a promising alternative to harness solar energy for both heating applications and electricity generation simultaneously. The system comprises a PV solar panel(for electricity generation). In addition, the solarwall incorporates a fan strategically located behind the PV panel to bring the warm and fresh air from the solarwall into the room. Because of its location and convective cooling principle, the fan also serves to reduce the operating temperature of the PV panel thereby increasing its efficiency. So this PV-Solarwall system holds much promise for saving heating and electricity costs compared with a PV system without solarwall. In particular, by controlling the tilt angle of the entire PV-Solarwall system between $0^{\circ}$(horizontal) and $90^{\circ}$(vertical), the performance of the system can be further evaluated. It is expected that the range of tilt angle PV-Solarwall between $40^{\circ}$ and $50^{\circ}$ will improve the output of the system.

단결정 실리콘 태양전지 최적 운전조건을 위한 전기적 특성 분석 (Analysis of Electrical Properties for Optimal Operating Conditions of Mono-crystalline Si Solar Cell)

  • 김지웅;최용성;이경섭;조수영;황종선
    • 한국전기전자재료학회논문지
    • /
    • 제24권8호
    • /
    • pp.654-658
    • /
    • 2011
  • This paper was investigated the electrical properties for optimal operating conditions of monocrystalline silicon solar cell. The output of electricity for monocrystalline solar cell was investigated according to the distances between solar cell and halogen lamp and to the resistances by the variable resistor.

Challenges of decarbonizing electricity in Indonesia: Barriers in the adoption of solar PV

  • Pradityo Sukarso, Adimas
    • 한국태양광발전학회지
    • /
    • 제4권3호
    • /
    • pp.27-35
    • /
    • 2018
  • Around the world, there are increasing efforts underway to decarbonize the electricity generation system to mitigate the environmental impacts including climate change. While Indonesia has a huge potential for new and renewable energy, particularly solar photovoltaic, Indonesia has been largely dependent on fossil fuels. As of 2017, the installed capacity for solar photovoltaic in Indonesia was 78.5MW and this was only 0.04% of the theoretical solar potential, which is around 207.9GW($4.8kWh/m^2/day$). With the case of solar photovoltaic, this paper examined the reasons of low adoption of the technology and the challenges of energy transition in Indonesia from the policy and institutional perspectives.

  • PDF

A Study of the Photo-Electric Efficiency of Dye-Sensitized Solar Cells Under Lower Light Intensity

  • Kim, Hee-Je;Kim, Yong-Chul;Hong, Ji-Tae;Kim, Mi-Jeong;Seo, Hyun-Woong;Park, Je-Wook;Choi, Jin-Young
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권4호
    • /
    • pp.513-517
    • /
    • 2007
  • To elucidate possible challenges for outdoor practical use of dye-sensitized solar cells (DSCs), we compared conventional Si solar cells with DSCs. DSC modules still require a larger area than conventional Si solar modules to attain the same rated output because of lower photoelectron-chemical conversion efficiency. However, in backup systems by using batteries, the measured data shows that DSCs generated 15% more electricity than Si solar cells of the same rated output power in the same interval of cloudy daylight. Moreover, the battery charging time of DSCs is about 1 hour faster than the same rate of Si solar cells under outdoor cloudy daylight. This result also indicates that conversion efficiency obtained by the certified condition less than AM 1.5 condition does not always coincide with the electricity generated outdoors daily, and it is not a crucial measure to evaluate the performance of solar cells.

중규모 태양광발전시스템 장기 실증운전 평가 (The long-term operating evaluation of the grid connected photovoltaic system)

  • 김의환;안교상;임희천
    • 한국태양에너지학회 논문집
    • /
    • 제29권5호
    • /
    • pp.14-19
    • /
    • 2009
  • The 50 kWp grid connected photovoltaic system which was installed at KEPRI site in 1999 has been operated more than 10 years. In order to acquire long term operation characteristics of medium size photovoltaic system, the operation test data related on power generation electricity and capacity factor of 50 kWp system, which have been collected since 1999, were analysed. From the analysing results, 57.7 MWh in annual power generation electricity of 50 kWp photovoltaic system in 1999 has been decreased 49.1 MWh in 2005 and reached 41.9 MWh in 2008. In addition to, the capacity factor of 50 kWp photovoltaic system also showed 13.2 % in 1999, 11.2% in 2005 and finally reached 9.6% in 2008. The operation test data showed a trend of decreasing of generation electricity and capacity factor during the 10 years operation time and we guessed that was caused by solar cell performance degradation and decreasing of PCS system efficiency.

태양전지 전력을 이용한 316L강의 전해연마 폐액 중 중금속 성분의 회수 (Recovery of Heavy-Metallic Components from a Waste Electro-polishing Solution of 316L Steel by the Solar Cell Electricity)

  • 김기호;장정목
    • 한국표면공학회지
    • /
    • 제42권1호
    • /
    • pp.53-57
    • /
    • 2009
  • Recovery of heavy-metallic component from a waste solution of factory was undertaken by the solar cell electricity. The solution was obtained from an electrolytic etching process of 316L stainless steel. The electrolysis of the solution for recovery of heavy metallic components was made with platinum plated titanium mesh anode and copper plate cathode. Analysis for the solution and electro-winned materials were made by EDS, XRD and SEM. Iron, chromium, and sulfur components were recovered on the cathode from the solution. Result of EDS analysis for the electro-winned materials revealed that some metal oxide were contained in the recovered material. The recovered materials were expected to have metallic form only by the electrolysis, but metal compounds were contained because of weak solar cell power. Nickel and manganese component in the solution doesn't recovered by this electrolysis process, but they made a sludge with phosphoric acid in the solution.

가열-냉각 사출성형 방식을 적용한 집광형 프레넬렌즈 (Heat & Cool Injection Molded Fresnel Lens Solar Concentrators)

  • 정병호;민완기;이강연
    • 전기학회논문지P
    • /
    • 제63권4호
    • /
    • pp.283-289
    • /
    • 2014
  • A Fresnel lens is an optical component which can be used as a cost-effective, lightweight alternative to conventional continuous surface optics. Fresnel lens solar concentrators continue to fulfill a market requirement as a system component in high volume cost effective Concentrating Photovoltaic (CPV) electricity generation. The basic principles of the fresnel lens are reviewed and some practical examples are described. To investigate the performance space of the Fresnel lens, a fast simulation method which is a hybrid between raytracing and analytical computation is employed to generate a cache of simulation data. Injection molders are warming up to the idea of cycling their tool surface temperature during the molding cycle rather than keeping it constant. Heat and cool process are now also finding that raising the mold wall temperature above the resin's glass-transition or crystalline melting temperature during the filling stage and product performance in applications from automotive to packaging to optics. This paper deals with the suitability of Fresnel lenses of imaging and non-imaging designs for solar energy concentration. The concentration fresnel lens confirmed machinability and optical transmittance and roughness measure through manufactured the prototype.

What Drives Residential Consumers Willingness to Use Green Technology Applications in Malaysia?

  • OTHMAN, Nor Salwati;HARUN, Nor Hamisham;ISHAK, Izzaamirah
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권10호
    • /
    • pp.269-283
    • /
    • 2021
  • The government policies and initiatives to guarantee sustainable energy and clean environmental conditions contributed to the introduction of green technology electricity appliances in the market. This study sought to determine the physiological and socio-economics-demographic factors driving residential electricity consumers to use green technology electricity appliances, mainly solar PV, smart meter, electric vehicle, and battery storage technology. By understanding consumer intention, the investors of solar PV, battery storage, electric vehicle, and smart meter can estimate the demand and upscale the market for the corresponding products. For that purpose, the intention to use the solar PV, smart meter, electric vehicle, and battery storage function is developed by utilizing the combination of the theory of planned behavior, technology acceptance, and reasoning action. A reliable and valid structured online questionnaire and stepwise multiple regression are used to identify the possible factors that drive consumer behavior intention. The results show that the social influence, knowledge on RE, and perceived price significantly influence residential consumers' willingness to adopt the technologies offered. The findings of this study suggest that the involvement of NGOs, public figures, and citizens' cooperation are all necessary to spread information about the government's objectives and support Malaysia's present energy and environmental policies.