• Title/Summary/Keyword: solar concentration

Search Result 546, Processing Time 0.029 seconds

Heating Transferring Charcteristics of Cement Mortar Block with Waste CNT and Conduction Activator (폐CNT와 전도촉진재를 혼입한 시멘트 모르타르 블록의 발열 전도 특성)

  • Koo, Hounchul;Kim, Woon-Hak;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.176-183
    • /
    • 2022
  • High-purity waste CNTs were mixed into cement mortar to manufacture heat-generating concrete that can use low voltage power, and carbon fiber and waste cathode materials were also used improve the conductivity of the mortar. The waste CNTs were analyzed to have a high concentration of multi-walled CNTs, and substituted liquid type waste CNTs were used during mortar mixing in order to increase dispersibility. The temperature change of the mortar with CNT was evaluated when using electric power below DC 24 V in order to utilize a small self-generation facility such as small solar power module when the mortar heats up and to minimize electromagnetic waves. When liquid-type waste CNTs were applied and a voltage of DC 24 V was introduced, it rose to 60 ℃ in a 200 × 100 × 50 mm mortar block specimen. The field applicability of self heating mortar with waste CNT was sufficient and also the amount of change in heat energy in mortar with liquid type waste CNT, carbon fiber and waste cathode materials is more effective compared to it of other variables.

Characteristics of Particle Growth and Chemical Composition of High Concentrated Ultra Fine Dusts (PM2.5) in the Air around the Power Plant (고농도 초미세먼지 출현 시 발전소 주변 대기 입자 성장 및 화학조성 특성)

  • Suji, Kang;Jinho, Sung;Youngseok, Eom;Sungnam, Chun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.103-110
    • /
    • 2022
  • Ultrafine Particle number and size distributions were simultaneously measured at rural area around the power plant in Dangjin, South Korea. New Particle formation and growth events were frequently observed during January, 2021 and classified based on their strength and persistence as well as the variation in geometric mean diameter(GMD) on January 12, 21 and 17. In this study, we investigated mechanisms of new particle growth based on measurements using a high resolution time of flight aerosol mass spectrometer(HR-ToF-AMS) and a scanning mobility particle sizer(SMPS). On Event days(Jan 12 and 21), the total average growth rate was found to be 8.46 nm/h~24.76 nm/hr. These growth rate are comparable to those reported for other urban and rural sites in South Korea using different method. Comparing to the Non-Event day(Jan 17), New Particle Growth mostly occurred when solar radiation is peaked and relative humidity is low in daytime, moreover enhanced under the condition of higher precusors, NO2 (39.9 vs 6.2ppb), VOCs(129.5 vs 84.6ppb), NH3(11 vs 4.7ppb). The HR-ToF-AMS PM1.0 composition shows Organic and Ammoniated nitrate were dominant species effected by emission source in domestic. On the other hand, The Fraction of Ammoniated sulfate was calculated to be approximately 16% and 31% when air quality is inflow from China. Longer term studies are needed to help resolve the relative contributions of each precusor species on new particle growth characteristics.

Numerical and statistical analysis of Newtonian/non-Newtonian traits of MoS2-C2H6O2 nanofluids with variable fluid properties

  • Manoj C Kumar;Jasmine A Benazir
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.341-352
    • /
    • 2024
  • This study investigates the heat and mass transfer characteristics of a MoS2 nanoparticle suspension in ethylene glycol over a porous stretching sheet. MoS2 nanoparticles are known for their exceptional thermal and chemical stability which makes it convenient for enhancing the energy and mass transport properties of base fluids. Ethylene glycol, a common coolant in various industrial applications is utilized as the suspending medium due to its superior heat transfer properties. The effects of variable thermal conductivity, variable mass diffusivity, thermal radiation and thermophoresis which are crucial parameters in affecting the transport phenomena of nanofluids are taken into consideration. The governing partial differential equations representing the conservation of momentum, energy, and concentration are reduced to a set of nonlinear ordinary differential equations using appropriate similarity transformations. R software and MATLAB-bvp5c are used to compute the solutions. The impact of key parameters, including the nanoparticle volume fraction, magnetic field, Prandtl number, and thermophoresis parameter on the flow, heat and mass transfer rates is systematically examined. The study reveals that the presence of MoS2 nanoparticles curbs the friction between the fluid and the solid boundary. Moreover, the variable thermal conductivity controls the rate of heat transfer and variable mass diffusivity regulates the rate of mass transfer. The numerical and statistical results computed are mutually justified via tables. The results obtained from this investigation provide valuable insights into the design and optimization of systems involving nanofluid-based heat and mass transfer processes, such as solar collectors, chemical reactors, and heat exchangers. Furthermore, the findings contribute to a deeper understanding of stretching sheet systems, such as in manufacturing processes involving continuous casting or polymer film production. The incorporation of MoS2-C2H6O2 nanofluids can potentially optimize temperature distribution and fluid dynamics.

Effect of Paddy Drying by Solar Energy Concentration Blast-Grain Circulation Dryer (태양열집열송풍(太陽熱集熱送風), 곡물순환식(穀物循環式) 건조기(乾燥機)의 벼 건조효과(乾燥效果))

  • Lee, B.Y.;Kim, Y.B.;Son, J.R.;Yoon, I.H.;Han, P.J.
    • Applied Biological Chemistry
    • /
    • v.32 no.2
    • /
    • pp.104-108
    • /
    • 1989
  • A 2.5 ton scale of solar energy concentration blast-grain circulation dryer (SECD) was developed in order to shorten the drying time without damaged paddy. Comparative experiments were carried out on performance, drying efficiency, consistency in moisture content, milling recovery, grade of milled rice, and energy requirement and cost against all that of in-bin drying and storage (IBDS) method. The experiments were performed using mixture of several rice varieties of Tongil type(Japonica-Indica breeding type) under the autumn weather in Korea. The circulating air temperature inside SECD was $4{\sim}5^{\circ}C$ higher than that of IBDS. The moisture content of the paddy during the drying period in SECD was uniform while substantially varied in upper, middle or bottom layer in IBDS. By SECD, 24% initial moisture content of paddy was reduced to 15% after only 3 days of drying as compared to 14 days at IBDS. The percentage of cracked kernels in upper, middle and bottom layers in IBDS was 6, 6 and 12%, respectively, whereas 7% in all layers in SECD. Both types of dryers did not significantly affect the milling recovery of dried paddy and grade of milled rice. Energy requirement of SECD(28.8Kw/2.5ton) for paddy drying was much less than that of IBDS(108Kw/2.5ton).

  • PDF

Studies on Dry Matter Yield s, Chmical Composition And Net Energy Accumlation in Three Leading Temperate Grass Species III. Seasonal changes of chemical components under dfferent cutting managements (주요북방형 목초의 건물수량 , 화학성분 및 Net Energy 축적에 관한 연구 III. 예취관리에 화학성분의 계절적 변화)

  • 김정갑;양종성;한흥전
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.6 no.3
    • /
    • pp.157-163
    • /
    • 1986
  • Synthesis and accumulation pattern of Weender components in orchardgrass (Dactylis glomerata L.) cv. Potomac and Baraula, perennial ryegrass (Lolium perenne L.) cv. Reveille and Semperweide and meadow fescue (Festuca pratensis Huds.) cv. Cosmos 11 and N.F.G. were studied under different growth environments and cutting managements. The field experiments were conducted as a split plot design with three cutting regimes of 6-7 cuts at grazing stage, 4-5 cuts at silage and 3 cuts at hay stage from 1975 to 1979 in Korea and West Germany. The results obtained are summarized as follows: 1. Air temperature, rainfalls and solar radiation were found to be an important meteorological factors influenced to synthesis and accumulation of Weender components. Under high temperature and strong solar radiation during summer season in Korea, accumulation of crude fiber and cell-wall constituents (NDF) in the plants, as average of all grass species and cutting regimes, were increased to about 30.1% and 48.7% from 27,9% and 42.9% in spring, respectively, while total nonstructural carbohydrates (TNC) were decreased to 1.52% in summer from 4.01% in spring. In West Germany, the concentration of Weeder components showed little seasonal variation. 2. Crude fiber and neutral detergent fiber (NDF) were shown higher concentration in orchardgrass than those of perennial ryegrass and meadow fescue, but N-free extractions and TNC as well as net energy value were less accumulated in orchardgrass. Orchardgrass contained lower net energy contents with 534 StE. 431 StE and 575 StE/kg for Suweon, Cheju and Freising, respectively, as compared with 624 StE (Suweon), 491 StE (Cheju) and 657 StE/kg (Freising) in meadow fescue.

  • PDF

Growth of ZnS nanocluster thin films by growth technique and investigation of structural and optical properties (용액성장법(Solution growth technique)에 의한 ZnS nano 입자 박막성장 및 구조적, 광학적 특성)

  • 이종원;임상철;곽만석;박인용;김선태;최용대
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.199-204
    • /
    • 2000
  • In this study, the ZnS nanosized thin films that could be used for fabrication of blue light-emitting diodes, electro-optic modulators, and n-window layers of solar cells were grown by the solution growth technique (SGT), and their structural and optical properties were examined. Based on these results, the quantum size effects of ZnS were systematically investigated. Governing factors related to the growth condition were the concentration of precursor solution, growth temperature, concentration of aq. ammonia, and growth duration. X-ray diffraction patterns showed that the ZnS thin film obtained in this study had the cubic structure ($\beta$-ZnS). When the growth temperature was $75^{\circ}C$, the surface morphology and the grain size uniformity were the best. The energy band gaps of samples were determined from the optical transmittance valued, and were shown to vary from 3.69 eV to 3.91 eV. These values were substantially higher than 3.65 eV of bulk ZnS, demonstrating that the quantum size effect of SGT grown ZnS is remarkable. Photoluminescence (PL) peaks were observed at the positions corresponding to the lower energy than that to energy band gap, illustrating that the surface states were induced by the ultra-fineness of grains in ZnS films. Particularly, for the first time, it is reported for the SGT grown ZnS that the PL peaks were shifted depending on the grain size.

  • PDF

Characteristics of New Particle Formation and Growth Events Observed at Gosan Climate Observatory in Fall 2009 (제주 고산에서 2009년 가을에 관측된 입자 생성 및 성장 현상의 특성)

  • Kim, Yumi;Kim, Sang-Woo;Yoon, Soon-Chang;Jang, Im-Suk;Lee, Suk-Jo;Lee, Meehye;Kim, Ji-Hyoung
    • Atmosphere
    • /
    • v.21 no.1
    • /
    • pp.35-44
    • /
    • 2011
  • We investigated characteristics of new particle formation and growth events observed at Gosan climate observatory using Scanning Mobility Particle Sizer (SMPS) measurements of particle number size distribution with 54 size ranges from 10 to 487 nm in October 2009. Four days (17~20 October) and five days (22~26 October) were classified into strong new particle formation and growth event ($N_S$) and weak particle formation and growth event ($N_W$), respectively. $N_S$ and $N_W$ divided by increase of aerosol number concentration in nucleation mode and continuity of growth from nucleation to Aitken mode. Particle growth rates of $N_S$ (5.34~$9.19nm\;h^{-1}$) were greater than that of $N_W$ (2.15~$3.53nm\;h^{-1}$). $N_S$ and $N_W$ were analyzed with synoptic pattern over East Asia, meteorological elements, and sulfur dioxide ($SO_2$) measured at Gosan. We found that $N_S$ was characterized by a fast and northwesterly wind accompanied cold and dry airmass, but $N_W$ was affected airmass originated from South China and come through the Korea Peninsula. The events ($N_S$ and $N_W$) occurred at conditions of high solar flux ($&gt;700W\;m^{-2}$) and low relative humidity (< 60%). The $SO_2$ concentration on $N_S$ and $N_W$ was higher than that on case of non observed new particle formation.

Development of Thermo-Cosmetics Using Photothermal Effect of Gold Nanoparticles (금 나노입자의 광열효과를 이용한 온열화장품 개발)

  • Lee, Jae-Yeul;Kim, Bo-Mi;Park, Se-Ho;Choi, Yo-Han;Shim, Kyu-Dong;Moon, Sung-Bae;Jang, Eue-Soon;Yang, Seun-Ah;Jhee, Kwang-Hwan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.1
    • /
    • pp.27-34
    • /
    • 2015
  • Many applications of nanoparticles have been developed since 1970s. Surface plasmon resonance (SPR) effect can be generated at the surface of nanoparticles by illumination. SPR is the resonant oscillation of conduction electrons at the surface material stimulated by incident light. The collisions between excited electrons and metal atoms can cause the production of thermal energy (photothermal effect). Here, we presented the development of thermo-cosmetics using photothermal effect of gold nanoparticles. Gold nanoparticles (GNPs) were chosen for it's low toxicity. We also and investigated the cell biocompatibility and heating effectiveness for photothermal effect of GNPs. Synthesized GNPs were verified by UV-vis spectrophotometer, where GNP has a characteristic absorbance spectrum. Concentration of GNP was measured by atomic absorption analyzer. The cytotoxicity was confirmed by MTT assay and double staining assay. Photothermal effect of GNP was demonstrated by the thermal increasing properties depending on GNP concentration, which was taken by an IR-thermal camera with a xenon lamp as the light source. If the thermal effect of GNP is applied for thermo-cosmetics, it can supply heat to skin by converting solar energy into thermal energy. Thus, cosmetics containing GNPs can provide benefits to people in the cold region or winter season for maintaining skin temperature, which lead to a positive effect on skin health.

Study on the Controlling Mechaniques of the Environmental Factors in the Mushroom Growing House in Chonnam Province (전남 지방에 있어서의 양송이 재배에 최적한 환경조건 조절법 분석에 관한 연구)

  • Chung, Byung-Jae;Lee, Eun-Chol
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.32-34
    • /
    • 1974
  • The important results which have been obtained in the investigation can be recapitulated as follows. 1. As demonstrated by the experimental results and analyses concerning their effects in the on-ground type mushroom house, the constructions in relation to the side wall and ceiling of the experimental house showed a sufficient heat insulation on effect to protect insides of the house from outside climatic conditions. 2. As the effect on the solar type experimental mushroom house which was constructed in a half basement has been shown by the experimental results and analyses, it has been proved to be effective for making use of solar heat. However there were found two problems to be improved for putting solar house to practical use in the farm mushroom growing: (1) the construction of the roof and ceiling should be the same as for the on ground type house, and (2) the solar heat generating system should be reconstructed properly. 3. Among several ventilation systems which have been studied in the experiments, the underground earthen pipe and ceiling ventilation, and vertical side wall and ceiling ventilation systems have been proved to be most effective for natural ventilation. 4. The experimental results have shown that ventilation systems such as the vertical side wall and underground ventilation systems are suitable to put to practical use as natural ventilation systems for farm mushroom house. These ventilation systems can remarkably improve the temperature of fresh air which is introduced into the house by heat transfers within the ventilation passages, so as to approach to the desired temperature of the house without any cooling or heating operation. For example, if it is assuming that X is the outside temperature and Y is the amount of temperature adjustment made by the influence of the ventilation system, the relationships that exist between X and Y can be expressed by the following regression lines. Underground iron pipe ventilation system. Y=0.9X-12.8 Underground earthen pipe ventilation system. Y=0.96X-15.11 Vertical side wall ventilation system. Y=0.94X-17.57 5. The experimental results have 8hown that the relationships existing between the admitted and expelled air and the $CO_2$ concentration can be described with experimental regression lines or an exponent equation as follows: 5.1 If it is assumed that X is an air speed cm/sec. and Y is an expelled air speed in cm/sec. in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the regression lines shown below: 5.2 If it IS assumed that X is an admitted volume of air in $m^3$/hr. and Y is an expelled volume of air in $m^3$/hr. in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the regression lines shown below. 5.3 If it is assumed that expelled air speed in emisec. and replacement air speed in cm/sec. at the bed surface in a natural ventilation system are shown as X and Y. respectively, since the Y is a function of the X. the relationships that exist between X and Y can be expressed by the following regression line: GE(100%)-CV (50%) ventilation system. Y=-0.54X+0.84 5.4 If it is assumed that the replacement air speed in cm/sec. at the bed surface is shown as X, and $CO_2$ concentration which is expressed by multiplying 1000 times the actual value of $CO_2$ % is shown as Y, in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the following regression line: GE(100%)-CV(50%) ventilation system. Y=114.53-6.42X 5.5 If it is assumed that the expelled volume of air is shown as X and the $CO_2$ concencration which is expressed by multiplying 1000 times the actual of $CO_2$% is shown as Y in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the following exponent equation: GE(100%)-CV(50%) ventilation system. Y=$127.18{\times}1.0093^{-x}$ 5.6 The experimental results have shown that the ratios of the cross sectional area of the GE and CV vent to the total cubic capacity of the house, required for providing an adequate amount of air in a natural ventilation system, can be estimated as follows: GE(admitting vent of the underground ventilation) 0.3-0.5% (controllable) CV(expelling vent of the ceiling ventilation) 0.8-1.0% (controllable) 6. Among several heating devices which were studied in the experiments, the hot-water boilor which wasmodified to be fitted both as hot-water boiler and as a pressureless steam-water was found most suitable for farm mushroom growing.

  • PDF

TECHNICAL STUDY ON THE CONTROLLING MECHANIQUES OF THE ENVIRONMENTAL FACTORS IN THE MUSHROOM GROWING HOUSE IN CHONNAM PROVINCE (전남지방(全南地方)에 있어서의 양송이 재배(栽培)에 최적(最適)한 환경조건(環境條件) 조절법분석(調節法分析)에 관(關)한 연구(硏究))

  • Lee, Eun Chol
    • Journal of Korean Society of Forest Science
    • /
    • v.9 no.1
    • /
    • pp.1-44
    • /
    • 1969
  • The important results which have been obtained in the investigation can be recapitulated as follows. 1. As demostrated by the experimental results and analyses concerning their effects in the on-ground type mushroom house, the constructions in relation to the side wall and ceiling of the experimental houses showed a sufficient heat insulation on effect to protect insides of the houses from outside climatic conditions. 2. As the effect on the solar type experimental mushroom house which was constructed in a half basement has been shown by the experimental results and analyses, it has been proved to be effective for making use of solar heat. However there were found two problems to be improved for putting solar houses to practical use in the farm mushroom growing: (1) the construction of the roof and ceiling should be the same as for the on-ground type house, and (2) the solar heat generating system should be reconstructed properly. A trial solar heat generating system is shown in Fig. 40. 3. Among several ventilation systems which have been studied in the experiments, the underground earthen pipe and ceiling ventilation, and vertical side wall and ceiling ventilation systems have been proved to be most effective for natural ventilation. 4. The experimental results have shown that ventilation systems such as the vertical side wall and underground ventilation systems are suitable to put to practical use as natural ventilation systems for farm mushroom houses. These ventilation systems can remarkably improve the temperature of fresh air which is introduced into the house by heat transfers within the ventilation passages, so as to approach to the desired temperature of the house without any cooling or heating operation. For example, if it is assuming that x is the outside temperature and y is the amount of temperature adjustment made by the influence of the ventilation system, the relationships that exist between x and y can be expressed by the following regression lines. Underground iron pipe ventilation system ${\cdots}{\cdots}$ y=0.9x-12.8 Underground earthen pipe ventilation system ${\cdots}{\cdots}$y=0.96x-15.11 Vertical side wall ventilation system${\cdots}{\cdots}$ y=0.94x-17.57 5. The experimental results have shown that the relationships existing between the admitted and expelled air and the $Co_2$ concentration can be described with experimental regression lines or an exponent equation as follows: 1) If it is assumed that x is an air speed cm/sec. and y is an expelled air speed in cm/sec. in a natural ventilation system, since the y is a function of the x, the relationships that exist between x and y can be expressed by the regression lines shown below: 2) If it is assumed that x is an admitted volume of air in $m^3/hr$ and y is an expelled volume of air in $m^3/hr$ in a natural ventilation system, since the y is a function of the x, the relationships that exist between x and y can be expressed by the regression lines shown below. 3) If it is assumed that the expelled air speed in cm/sec and replacement air speed in cm/sec. at the bed surface in a natural ventilation system are shown as x and y, respectively, since the y is a function of the x, the relationships that exist between x and y can be expressed by the following regression line: G.E. (100%)- C.V. (50%) ventilation system${\cdots}$ y=0.54X+0.84 4) If it is assumed that the replacement air speed in cm/sec. at the bed surface is shown as x, and $CO_2$ concentration which is expressed by multiplying 1000 times the actual value of $CO_2$ % is shown as y, in a natural ventilation system, since the y is a function of the x the relationships that exist between x and y can be expressed by the following regression line: G.E. (100%)- C.V. (50%) ventilation system${\cdots}{\cdots}$ y=114.53-6.42x 5) If it is assumed that the expelled volume of air is shown as x and the $CO_2$ concentration which is expressed by multiplying 1000 times the actual of $CO_2$ % is shown as y in a natural ventilation system, since the y is a function of of the x, the relationships that exist between x and y can be expressed by the following exponent equation: G.E. (100%)-C.V. (50%) ventilation system${\cdots}{\cdots}$ $$y=127.18{\times}1.0093^{-X}$$ 6. The experimental results have shown that the ratios of the crass sectional area of the G.E. and C.V. vent to the total cubic capacity of the house, required for providing an adequate amount of air in a natural ventilation system, can be estimated as follows: G.E. (admitting vent of the underground ventilation)${\cdots}{\cdots}$ 0.30-0.5% (controllable) C.V. (expelling vent of the ceiling ventilation)${\cdots}{\cdots}$ 0.8-1.0% (controllable) 7. Among several heating devices which were studied in the experiments, the hot-water boilor which was modified to be fitted both as hot-water toiler and as a pressureless steam-water was found most suitable for farm mushroom growing.

  • PDF