• 제목/요약/키워드: solar cell manufacturing

검색결과 176건 처리시간 0.027초

알카리 금속을 배재한 단결정 실리콘 태양전지의 텍스쳐링 공정 (Alkali metal free texturing for mono-crystalline silicon solar cell)

  • 김태윤;김회창;김범호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.48.1-48.1
    • /
    • 2010
  • 단결정 실리콘 태양전지 제조 공정이 진행되는 과정에서 각종 오염물에 의해 표면이 오염된다. 태양전지의 효율 개선을 위한 표면 texturing 공정은 주로 wet etch을 주로 사용한다. Wet etch 공정 시 주로 사용되는 KOH 용액은 texturing 후 실리콘 웨이퍼 표면에 K+ 이온을 남기고 이는 태양전지 표면에서의 불순물로 작용하여 효율을 저하시키는 요인이 된다. 이를 제거하기 위해 불산 및 오존에 의한 세정 공정이 추가로 필요로 하게 된다. 이러한 공정을 최소화 하며 잔존하는 알칼리 금속도 제거하기 위해, etchant로 알카리 용액이 아닌 ethylenediamine을 사용하여 texturing 후 KOH 용액과 비교해 보았다.

  • PDF

평판 구조의 집광형 태양광 모듈 구조에 관한 연구 (A Study on Concentrating Photovoltaic Module with Plate Structure)

  • 박승재;홍민성
    • 한국생산제조학회지
    • /
    • 제22권4호
    • /
    • pp.629-634
    • /
    • 2013
  • This study aims to investigate a new structure for a concentrating photovoltaic (PV) module using a III-V compound semiconductor solar cellto solve the problems of existing concentrating PV modules and to explore a concentrating optical system with a flat structure, which shows remarkable advantages in terms of manufacturing cost, installation, and maintenance. This study should greatly contribute toward the development of concentrating PV modules. This study was performed to achieve an improvement in efficiency and economy and to implement an actual product. A new source of renewable energy is the only way in which countries that cannot produce oil can even emerge as an energy power. Therefore, this work can serve as a fundamental study that will help South Korea grow into a country that is a PV power generation force.

인쇄전자 기술을 이용한 유기 태양전지 기술 개발 (Development of the Organic Solar Cell Technology using Printed Electronics)

  • 김정수;유종수;윤성만;조정대;김동수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.113.1-113.1
    • /
    • 2011
  • PEMS (printed electro-mechanical system) is fabricated by means of various printing technologies. Passive and active compo-nents in 2D or 3D such as conducting lines, resistors, capacitors, inductors and TFT(Thin Film Transistor), which are printed withfunctional materials, can be classified in this category. And the issue of PEMS is applied to a R2R process in the manu-facturing process. In many electro-devices, the vacuum process is used as the manufacturing process. However, the vacuum process has a problem, it is difficult to apply to a continuous process such as a R2R(roll to roll) printing process. In this paper, we propose an ESD (electro static deposition) printing process has been used to apply an organic solar cell of thin film forming. ESD is a method of liquid atomization by electrical forces, an electrostatic atomizer sprays micro-drops from the solution injected into the capillary with electrostatic force generated by electric potential of about several tens kV. ESD method is usable in the thin film coating process of organic materials and continuous process as a R2R manufacturing process. Therefore, we experiment the thin films forming of PEDOT:PSS layer and active layer which consist of the P3HT:PCBM. The organic solar cell based on a P3HT/PCBM active layer and a PEDOT:PSS electron blocking layer prepared from ESD method shows solar-to-electrical conversion efficiency of 1.42% at AM 1.5G 1sun light illumination, while 1.86% efficiency is observed when the ESD deposition of P3HT/PCBM is performed on a spin-coated PEDOT:PSS layer.

  • PDF

티타늄이 증착된 유리를 사용한 FTO-less 염료감응형 태양전지에 관한 연구 (A Study on FTO-less Dye Sensitized Solar Cell with Ti Deposited Glass)

  • 박송이;서현웅;손민규;김수경;홍나영;송정윤;프라바카르;김희제
    • 전기학회논문지
    • /
    • 제62권2호
    • /
    • pp.208-212
    • /
    • 2013
  • Dye-sensitized solar cells (DSCs) have taken much attention due to their low cost and easy fabrication method compare to silicon solar cells. But research on cost effective DSC is prerequisite for commercialization. Fluorine doped tin oxide (FTO) which have been commonly used for electrode substrate as electron collector occupied most percentage of manufacturing cost. Therefore we studied FTO-less DSC using sputtered Ti deposited glass as photoelectrode instead of FTO to reduce manufacturing cost. Ti films sputtered on the glass for different time, 5 to 20 minutes with decreasing sheet resistance as deposition time increases. A light source illuminated to counter electrode in order to overcome opaque Ti films. The efficiency of DSC (Ti20) made Ti sputtered glass for 20 min as photoelectrode was 5.87%. There are no significant difference with conventional cell despite lower manufacturing cost.

광조사에 의한 실리콘 태양전지 열화 연구 (Study of Light-induced Effect on Silicon Solar Cell from Wafer to Cell: A Review)

  • 심명섭;최동진;우명지;손지우;최영호;김동환
    • Current Photovoltaic Research
    • /
    • 제12권1호
    • /
    • pp.6-16
    • /
    • 2024
  • The efficiency of silicon solar cells is approaching a theoretical limit referred to as 'the state of the art'. Consequently, maintaining efficiency is more productive than pursuing improvements the last room for limiting efficiency. One of the primary considerations in silicon module conservation is the occurrence of failures and degradation. Degradation can be mitigated during the cell manufacturing stage, unlike physical and spontaneous failure. It is mostly because the chemical reaction is triggered by the carrier generation of thermal and light injection, an inherent aspect of the solar cell environment. Therefore, numerous researchers and cell manufacturers are engaged in implementing mitigation strategies based on the physical degradation mechanism.

후면전극형 실리콘 태양전지 제조기술 개발 (Development of Manufacturing Processes of Crystalline Silicon Back Contact Solar Cells)

  • 김대원;이건영;조은철;박상욱;문인식;이규열;유재희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.89-93
    • /
    • 2005
  • A rear contact solar cell has a potential merit of efficiency improvement by a low shading loss in front surface. a simplified module assembly. and a higher packing density. Among the rear contact solar cells. MWT. metallizationl wrap through MWT solar cells that have the bus bars on the back side and the front side metallization is connected to the back through metal filled laser fired holes in the silicon wafer. This approach has the advantages of a much more uniform appearance. The first fabrication of MWT using a multicrystalline silicon modules in our group showed $12.28\%$ on $125mm{\times}125mm$ active area.

  • PDF

반사판을 이용한 고정식 집광형 복합 Panel에 대한 연구 (A study on the fixed-concentrating hybrid panel using reflector)

  • 김완태;김규조;김승환;허창수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.352-355
    • /
    • 2000
  • Although for its great amount and cleanness solar energy has been studied a lot as a substitute one, it is limitedly being utilized in heating water and partly in special usage for high cost of installing solar cell in Korea. Consider domestic shortage of natural energy resources and environmental issue by the Climate Agreement treated in 1994, it is urgently needed to study the practical application of solar energy as a substitute one. Therefore in order to increase the efficiency of solar cell and decrease its price, this study treats the course of designing and manufacturing the panel that connects sunlight by fixing reflector.

  • PDF

용액 코팅을 이용한 태양전지용 고분자 유연 패턴필름 제조 (Manufacturing of Flexible Patterned Cover Film for Solar Cell by Solution Coating)

  • 박찬욱;강호종
    • 폴리머
    • /
    • 제37권5호
    • /
    • pp.656-662
    • /
    • 2013
  • 태양전지의 효율 증가를 위하여 유리비드가 함유된 polymethyl methacrylate(PMMA) 용액을 PMMA 필름 위에 코팅하여 유리비드가 코팅된 고분자 유연 패턴 필름을 제조하고 패턴 필름이 태양전지 효율에 미치는 영향을 살펴보았다. 필름 위에 코팅된 유리비드로 인하여 빛의 입사각 0도에서 90도 범위에서 태양전지의 상대효율이 최대 3.4%까지 증가함을 알 수 있었다. 이러한 효율 증가는 빛의 입사각 변화에도 필름 표면에 형성되어 있는 구 형태의 유리비드로 인하여 빛이 수직으로 입사되어 방향성에 의한 태양전지 효율 감소가 최소화되기 때문이다. 태양전지상대효율 증가는 필름 표면 위의 유리비드가 반구의 형태를 가질 때 가장 높으며 유리비드 함량에 따라 증가되나 유리비드 함량이 너무 많은 경우, 오히려 광 투과도 감소 및 빛의 간섭 효과에 의하여 상대효율이 감소됨을 알 수 있었다.

태양전지 모듈의 솔더링 공정에 대한 신뢰성 (Soldering Process of PV Module manufacturing and Reliability)

  • 김성진;최준영;공지현;문종혁;이세훈;심원현;이은혜;이은주;이해석
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.303-306
    • /
    • 2011
  • Although PV module manufacturing and its structure are simple, the semi-permanent products can be used out doors for more than twenty years. Therefore it is need to choose proper materials and optimize manufacturing process. This paper suggest that factors of degradation need to be studied to achieve a more understanding of PV module Degradation rates and material failure. Nowadays durability of the PV Module is very important to sustain output safety for obtaining reliability. This paper is about the experiment that soldering uniformity of soldering process and to make least void from soldering process. From This study soldering flux residue and soldering method is main factor to form void blocked soldering uniformity and by using this.

  • PDF