• Title/Summary/Keyword: solar cell doping

Search Result 169, Processing Time 0.033 seconds

Prevention of P-i Interface Contamination Using In-situ Plasma Process in Single-chamber VHF-PECVD Process for a-Si:H Solar Cells

  • Han, Seung-Hee;Jeon, Jun-Hong;Choi, Jin-Young;Park, Won-Woong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.204-205
    • /
    • 2011
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is a most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. For best performance of thin film silicon solar cell, the dopant profiles at p/i and i/n interfaces need to be as sharp as possible. The sharpness of dopant profiles can easily achieved when using multi-chamber PECVD equipment, in which each layer is deposited in separate chamber. However, in a single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of a single-chamber PECVD system in spite of the advantage of lower initial investment cost for the equipment. In order to resolve the cross-contamination problem in single-chamber PECVD systems, flushing method of the chamber with NH3 gas or water vapor after doped layer deposition process has been used. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. A single-chamber VHF-PECVD system was used for superstrate type p-i-n a-Si:H solar cell manufacturing on Asahi-type U FTO glass. A 80 MHz and 20 watts of pulsed RF power was applied to the parallel plate RF cathode at the frequency of 10 kHz and 80% duty ratio. A mixture gas of Ar, H2 and SiH4 was used for i-layer deposition and the deposition pressure was 0.4 Torr. For p and n layer deposition, B2H6 and PH3 was used as doping gas, respectively. The deposition temperature was $250^{\circ}C$ and the total p-i-n layer thickness was about $3500{\AA}$. In order to remove the deposited B inside of the vacuum chamber during p-layer deposition, a high pulsed RF power of about 80 W was applied right after p-layer deposition without SiH4 gas, which is followed by i-layer and n-layer deposition. Finally, Ag was deposited as top electrode. The best initial solar cell efficiency of 9.5 % for test cell area of 0.2 $cm^2$ could be achieved by applying the in-situ plasma cleaning method. The dependence on RF power and treatment time was investigated along with the SIMS analysis of the p-i interface for boron profiles.

  • PDF

Quality evaluation of diamond wire-sawn gallium-doped silicon wafers

  • Lee, Kyoung Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.3
    • /
    • pp.119-123
    • /
    • 2013
  • Most of the world's solar cells in photovoltaic industry are currently fabricated using crystalline silicon. Czochralski-grown silicon crystals are more expensive than multicrystalline silicon crystals. The future of solar-grade Czochralski-grown silicon crystals crucially depends on whether it is usable for the mass-production of high-efficiency solar cells or not. It is generally believed that the main obstacle for making solar-grade Czochralski-grown silicon crystals a perfect high-efficiency solar cell material is presently light-induced degradation problem. In this work, the substitution of boron with gallium in p-type silicon single crystal is studied as an alternative to reduce the extent of lifetime degradation. The diamond-wire sawing technology is employed to slice the silicon ingot. In this paper, the quality of the diamond wire-sawn gallium-doped silicon wafers is studied from the chemical, electrical and structural points of view. It is found that the characteristic of gallium-doped silicon wafers including texturing behavior and surface metallic impurities are same as that of conventional boron-doped Czochralski crystals.

Intermediate band solar cells with ZnTe:Cr thin films grown on p-Si substrate by pulsed laser deposition

  • Lee, Kyoung Su;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.247.1-247.1
    • /
    • 2016
  • Low-cost, high efficiency solar cells are tremendous interests for the realization of a renewable and clean energy source. ZnTe based solar cells have a possibility of high efficiency with formation of an intermediated energy band structure by impurity doping. In this work, ZnO/ZnTe:Cr and ZnO/i-ZnTe structures were fabricated by pulsed laser deposition (PLD) technique. A pulsed (10 Hz) Nd:YAG laser operating at a wavelength of 266 nm was used to produce a plasma plume from an ablated a ZnTe target, whose density of laser energy was 10 J/cm2. The base pressure of the chamber was kept at approximately $4{\times}10-7Torr$. ZnTe:Cr and i-ZnTe thin films with thickness of 210 nm were grown on p-Si substrate, respectively, and then ZnO thin films with thickness of 150 nm were grown on ZnTe:Cr layer under oxygen partial pressure of 3 mTorr. Growth temperature of all the films was set to $250^{\circ}C$. For fabricating ZnO/i-ZnTe and ZnO/ZnTe:Cr solar cells, indium metal and Ti/Au grid patterns were deposited on back and front side of the solar cells by using thermal evaporator, respectively. From the fabricated ZnO/ZnTe:Cr and ZnO/i-ZnTe solar cell, dark currents were measured by using Keithley 2600. Solar cell parameters were obtained under Air Mass 1.5 Global solar simulator with an irradiation intensity of 100 mW/cm2, and then the photoelectric conversion efficiency values of ZnO/ZnTe:Cr and ZnO/i-ZnTe solar cells were measured at 1.5 % and 0.3 %, respectively.

  • PDF

The Effect of Boron Doped CdS Film on CdS/CdTe Solar Cell (CdS 박막의 boron doping에 따른 CdS/CdTe 태양전지 특성)

  • Lee, H.Y.;Lee, J.H.;Kim, J.H.;Park, Y.K.;Shin, J.H.;Shin, S.H.;Park, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1370-1372
    • /
    • 1998
  • Boron doped CdS films were prepared by CBD(Chemical Bath Deposition) method using boric acid ($B_3HO_3$) as donor dopant source, and their properties were investigated. As-grown CdS films were highly adherent and specularly reflective. Boron doped CdS film which was fabricated under the condition of 0.01 $B_3HO_3/Cd(Ac)_2$ mole ratio, exhibited the lowest resistivity of $2{\Omega}cm$ and the highest optical bandgap of 2.41eV. Also, CdS/CdTe solar cells were fabricated with various doping concentration of CdS films. Using optimized CdS film as the window layer of CdS/CdTe solar cell, the characteristics of the cell were improved. ( $V_{oc}$=610mV, $J_{sc}$=37.5mA/cm, FF=0.4, $\eta$=9.1% )

  • PDF

Fabrication of Ordered One-Dimensional Silicon Structures and Radial p-n Junction Solar Cell

  • Kim, Jae-Hyun;Baek, Seong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.86-86
    • /
    • 2012
  • The new approaches for silicon solar cell of new concept have been actively conducted. Especially, solar cells with wire array structured radial p-n junctions has attracted considerable attention due to the unique advantages of orthogonalizing the direction of light absorption and charge separation while allowing for improved light scattering and trapping. One-dimenstional semiconductor nano/micro structures should be fabricated for radial p-n junction solar cell. Most of silicon wire and/or pillar arrays have been fabricated by vapour-liquid-solid (VLS) growth because of its simple and cheap process. In the case of the VLS method has some weak points, that is, the incorporation of heavy metal catalysts into the growing silicon wire, the high temperature procedure. We have tried new approaches; one is electrochemical etching, the other is noble metal catalytic etching method to overcome those problems. In this talk, the silicon pillar formation will be characterized by investigating the parameters of the electrochemical etching process such as HF concentration ratio of electrolyte, current density, back contact material, temperature of the solution, and large pre-pattern size and pitch. In the noble metal catalytic etching processes, the effect of solution composition and thickness of metal catalyst on the etching rate and morphologies of silicon was investigated. Finally, radial p-n junction wire arrays were fabricated by spin on doping (phosphor), starting from chemical etched p-Si wire arrays. In/Ga eutectic metal was used for contact metal. The energy conversion efficiency of radial p-n junction solar cell is discussed.

  • PDF

Characteristics of Mono Crystalline Silicon Solar Cell for Rear Electrode with Aluminum and Aluminum-Boron (Aluminum 및 Aluminum-Boron후면 전극에 따른 단결정 실리콘 태양전지 특성)

  • Hong, Ji-Hwa;Baek, Tae-Hyeon;Kim, Jin-Kuk;Choi, Sung-Jin;Kim, Nam-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.34-39
    • /
    • 2011
  • Screen printing method is a common way to fabricate the crystalline silicon solar cell with low-cost and high-efficiency. The screen printing metallization use silver paste and aluminum paste for front and rear contact, respectively. Especially the rear contact between aluminum and silicon is important to form the back surface filed (Al-BSF) after firing process. BSF plays an important role to reduces the surface recombination due to $p^+$ doping of back surface. However, Al electrode on back surface leads to bow occurring by differences in coefficient of thermal expansion of the aluminum and silicon. In this paper, we studied the properties of mono crystalline silicon solar cell for rear electrode with aluminum and aluminum-boron in order to characterize bow and BSF of each paste. The 156*156 $m^2$ p-type silicon wafers with $200{\mu}m$ thickness and 0.5-3 ${\Omega}\;cm$ resistivity were used after texturing, diffusion, and antireflection coating. The characteristics of solar cells was obtained by measuring vernier callipers, scanning electron microscope and light current-voltage. Solar cells with aluminum paste on the back surface were achieved with $V_{OC}$ = 0.618V, JSC = 35.49$mA/cm^2$, FF(Fill factor) = 78%, Efficiency = 17.13%.

  • PDF

Boron doping with fiber laser and lamp furnace heat treatment for p-a-Si:H layer for n-type solar cells

  • Kim, S.C.;Yoon, K.C.;Yi, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.322-322
    • /
    • 2010
  • For boron doping on n-type silicon wafer, around $1,000^{\circ}C$ doping temperature is required, because of the relatively low solubility of boron in a crystalline silicon comparing to the phosphorus case. Boron doping by fiber laser annealing and lamp furnace heat treatment were carried out for the uniformly deposited p-a-Si:H layer. Since the uniformly deposited p-a-Si:H layer by cluster is highly needed to be doped with high temperature heat treatment. Amorphous silicon layer absorption range for fiber laser did not match well to be directly annealed. To improve the annealing effect, we introduce additional lamp furnace heat treatment. For p-a-Si:H layer with the ratio of $SiH_4:B_2H_6:H_2$=30:30:120, at $200^{\circ}C$, 50 W power, 0.2 Torr for 30 min. $20\;mm\;{\times}\;20\;mm$ size fiber laser cut wafers were activated by Q-switched fiber laser (1,064 nm) with different sets of power levels and periods, and for the lamp furnace annealing, $980^{\circ}C$ for 30 min heat treatment were implemented. To make the sheet resistance expectable and uniform as important processes for the $p^+$ layer on a polished n-type silicon wafer of (100) plane, the Q-switched fiber laser used. In consequence of comparing the results of lifetime measurement and sheet resistance relation, the fiber laser treatment showed the trade-offs between the lifetime and the sheet resistance as $100\;{\omega}/sq.$ and $11.8\;{\mu}s$ vs. $17\;{\omega}/sq.$ and $8.2\;{\mu}s$. Diode level device was made to confirm the electrical properties of these experimental results by measuring C-V(-F), I-V(-T) characteristics. Uniform and expectable boron heavy doped layers by fiber laser and lamp furnace are not only basic and essential conditions for the n-type crystalline silicon solar cell fabrication processes, but also the controllable doping concentration and depth can be established according to the deposition conditions of layers.

  • PDF

Doping Characterization of CVD Doped Oxide (CVD 이용한 Doping 특성 평가)

  • Oh, Donghae;Ahn, Hwanggi;Kim, Kihyung;Kim, Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.45.2-45.2
    • /
    • 2010
  • 태양전지에서 사용되는 도핑 방법으로는 고온 확산 공정, 레이저 도핑 기술이 주로 사용되고 있으며 이러한 도핑기술은 태양전지 생산가격을 낮추고 변환효율을 향상시키는 핵심 기술로서 활발히 연구되고 있다. 본 연구에서는 화학 기상 증착으로 불순물이 포함된 산화막 형성 후 고온 열처리 공정을 통하여 Si 내부의 불순물 공급을 평가하였다. 특히, 화학 기상 증착 방법으로 제조한 불순물 산화막의 불순물 농도를 반응 가스의 유량을 조절하여 Si 표면에서의 농도차를 조절할 수 있고 이를 이용하여 불순물을 Si 내부로 확산시킨다. 반응 가스의 유량과 열처리 온도를 통하여 $20{\sim}100{\Omega}/\Box$의 면저항 영역을 구현하였으며 이를 태양전지에 적용할 수 있음을 확인하였다.

  • PDF

PC1D 기반의 2스텝 도핑을 통한 실리콘 태양전지의 최적화

  • Kim, Yeong-Pil;Jeong, U-Won;Lee, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.256-256
    • /
    • 2009
  • This paper presents a proper condition to achieve above 17 % conversion efficiency using PC1D simulator. Crystalline silicon wafer with thickness of $240{\mu}m$ was used as a starting material. Various efficiency influencing parameters such as rear surface recombination velocity and minority carrier diffusion length in the base region, front surface recombination velocity, junction depth and doping concentration in the Emitter layer. Among the investigated variables, we learn that 2nd doping concentration as a key factor to achieve conversion efficiency higher than 17 %.

  • PDF

Neutral Beam assisted Chemical Vapor Deposition at Low Temperature for n-type Doped nano-crystalline silicon Thin Film

  • Jang, Jin-Nyeong;Lee, Dong-Hyeok;So, Hyeon-Uk;Yu, Seok-Jae;Lee, Bong-Ju;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.52-52
    • /
    • 2011
  • A novel deposition process for n-type nanocrystalline silicon (n-type nc-Si) thin films at room temperature has been developed by adopting the neutral beam assisted chemical vapor deposition (NBa-CVD). During formation of n-type nc-Si thin film by the NBa-CVD process with silicon reflector electrode at room temperature, the energetic particles could induce enhance doping efficiency and crystalline phase in polymorphous-Si thin films without additional heating on substrate; The dark conductivity and substrate temperature of P-doped polymorphous~nano crystalline silicon thin films increased with increasing the reflector bias. The NB energy heating substrate(but lower than $80^{\circ}C$ and increase doping efficiency. This low temperature processed doped nano-crystalline can address key problem in applications from flexible display backplane thin film transistor to flexible solar cell.

  • PDF