• Title/Summary/Keyword: solar cell doping

Search Result 169, Processing Time 0.026 seconds

Analysis of Current-voltage Characteristic Curve for the Solar Cell using MicroTec Tool (MicroTec을 이용한 태양전지 전류-전압 특성곡선 분석)

  • Jung, Hak-Kee;Han, Ji-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1045-1050
    • /
    • 2009
  • The current-voltage characteristics of solar cell has been analyzed using MicroTec in this paper. The current-voltage characteristics represents a efficiency of solar cell. The part of metal contact is doped highly, but active region is doped lowly. We have investigated the current-voltage characteristics according to variation of doping concentration from $10^{14}cm^{-3}$ to $10^{17}cm^{-3}$. We has also determined the doping concentration to obtain the maximum efficiency of solar cell, and analyzed this current-voltage characteristics.

Doping-free Transparent Conducting Schottky Type Heterojunction Solar Cells

  • Kim, Joon-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.209-209
    • /
    • 2012
  • High-efficient transparent conductive oxide (TCO) film-embedding Si heterojunction solar cells were fabricated. An additional doping was not applied for heterojunction solar cells due to the spontaneous junction formation between TCO films and an n-type Si substrate. Three different TCO coatings were formed by sputtering method for an Al-doped ZnO (AZO) film, an indium-tin-oxide (ITO) film and double stacks of ITO/AZO films. An improved crystalline ITO film was grown on an AZO template upon hetero-epitaxial growth. This double TCO films-embedding Si heterojunction solar cell provided significantly enhanced efficiency of 9.23% as compared to the single TCO/Si devices. The effective arrangement of TCO films (ITO/AZO) provides benefits of a lower front contact resistance and a smaller band offset to Si leading enhanced photovoltaic performances. This demonstrates a potential scheme of the effective TCO film-embedding heterojunction Si solar cells.

  • PDF

Characterization of Combined Micro- and Nano-structure Silicon Solar Cells using a POCl3 Doping Process

  • Jeong, Chaehwan;Kim, Changheon;Lee, Jonghwan;Yi, Junsin;Lim, Sangwoo;Lee, Suk-Ho
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.69-72
    • /
    • 2013
  • Combined nano- and micro-wires (CNMWs) Si arrays were prepared using PR patterning and silver-assisted electroless etching. A $POCl_3$ doping process was applied to the fabrication of CNMWs solar cells. KOH solution was used to remove bundles in CNMWs and the etching time was varied from 30 to 240 s. The lowest reflectance of 3.83% was obtained at KOH etching time of 30 s, but the highest carrier lifetime of $354{\mu}s$ was observed after the doping process at 60 s. At the same etching time, a $V_{oc}$ of 574 mV, $J_{sc}$ of $28.41mA/cm^2$, FF of 74.4%, and Eff. of 12.2% were achieved in the CNMWs solar cell. CNMWs solar cells have potential for higher efficiency by improving the post-process and surface-rear side structure.

A Study on Feasibility of the Phosphoric Acid Doping for Solar Cell Using Newly Atmospheric Pressure Plasma Source (새로운 대기압 플라즈마 소스를 이용한 결정질 실리콘 태양전지 인산 도핑 가능성에 관한 연구)

  • Cho, I-Hyun;Yun, Myoung-Soo;Jo, Tae-Hoon;Kwon, Gi-Chung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.95-99
    • /
    • 2013
  • Furnace is currently the most important doping process using POCl3 in solar cell. However furnace need an expensive equipment cost and it has to purge a poisonous gas. Moreover, furnace typically difficult appling for selective emitters. In this study, we developed a new atmospheric pressure plasma source, in this procedure, we research the atmospheric pressure plasma doping that dopant is phosphoric acid($H_3PO_4$). Metal tube injected Ar gas was inputted 5 kV of a low frequency(scores of kHz) induced inverter, so plasma discharged at metal tube. We used the P type silicon wafer of solar cell. We regulated phosphoric acid($H_3PO_4$) concentration on 10% and plasma treatment time is 90 s, 150 s, we experiment that plasma current is 70 mA. We check the doping depth that 287 nm at 90 s and 621 nm at 150 s. We analysis and measurement the doping profile by using SIMS(Secondary Ion Mass Spectroscopy). We calculate and grasp the sheet resistance using conventional sheet resistance formula, so there are 240 Ohm/sq at 90 s and 212 Ohm/sq at 150 s. We analysis oxygen and nitrogen profile of concentration compared with furnace to check the doped defect of atmosphere.

A Study of the Quantitative Relationship of Charge-Density Changes and the Design Area of a Fabricated Solar Cell

  • Jeon, Kyeong-Nam;Kim, Seon-Hun;Kim, Hoy-Jin;Kim, In-Sung;Kim, Sang-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.204-208
    • /
    • 2011
  • In this paper, the design area of a fabricated solar cell has been analyzed with respect to its charge density. The mathematical calculation used for charge-density derivation was obtained from the 2001 version of a MATHCAD program. The parameter range for the calculations was ${\pm}1{\times}10^{17}cm^{-3}$, which is in the normal parameter range for n-type doping impurities ($7.0{\times}10^{17}cm^{-3}$) and also for p-type impurities ($4.0{\times}10^{17}cm^{-3}$). Therefore, it can be said that the fabricated solar-cell design area has a direct effect on charge-density changes.

Biracial Silicon Solar Cells with Spin-on Doping and Electroless Plating

  • U. Gangopadhyay;Kim, Kyung-Hae;S.K. Dhungel;D. Mangalaraj;Park, J.H.;J. Yi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.1
    • /
    • pp.7-10
    • /
    • 2004
  • A new method for fabrication of transistor like structure of the bifacial solar cell using spin-on doping and electroless plating has been proposed and the basic characteristics of the bifacial cell have been investigated. It is found that 9% increase in short circuit current is achieved with bifacial connection than the unifacial connection. Some unwanted effect of the series resistance on collection efficiency under different mode of illumination has been pointed out. Loss mechanisms inherent in the transistor like bifacial structure have also been discussed.

The Effects of Growth Temperature and Substrate Tilt Angle on GalnP/GaAs Tandem Solar Cells

  • Jun, Dong-Hwan;Kim, Chang-Zoo;Kim, Hog-Young;Shin, Hyun-Beom;Kang, Ho-Kwan;Park, Won-Kyu;Shin, Ki-Soo;Ko, Chul-Gi
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.2
    • /
    • pp.91-97
    • /
    • 2009
  • The performance of GaInP/GaAs tandem solar cells with AlInP growth temperatures of 680$^{\circ}C$ and 700 $^{\circ}C$ on n-type GaAs (100) substrate with 2$^{\circ}$ and 6$^{\circ}$ tilt angles has been investigated. The series resistance and open circuit voltage of the fabricated tandem solar cells are affected by the substrate tilt angles and the growth temperatures of the window layer when zinc is doped in the tunnel diode. With carbon doping as a p-type doping source in the tunnel diode and the effort of current matching between top and bottom cells, GaInP/GaAs tandem solar cell has been exhibited 25.58% efficiency.

Optimization of Drive-in Temperature at Doping Process for Mono Crystalline Silicon Solar Cell (단결정 실리콘 태양전지의 도핑 최적화를 위한 확산 온도에 대한 연구)

  • Cho, Sung-Jin;Song, Hee-Eun;Yoo, Kwon-Jong;Yoo, Jin-Soo;Han, Kyu-Min;Kwon, Jun-Young;Lee, Hi-Deok
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.37-43
    • /
    • 2011
  • In this paper, the optimized doping condition of crystalline silicon solar cells with $156{\times}156\;mm^2$ area was studied. To optimize the drive-in temperature in the doping process, the other conditions except variable drive-in temperature were fixed. These conditions were obtained in previous studies. After etching$7\;{\mu}m$ of the surface to form the pyramidal structure, the silicon nitride deposited by the PECVD had 75~80nm thickness and 2 to 2.1 for a refractive index. The silver and aluminium electrodes for front and back sheet, respectively, were formed by screen-printing method, followed by firing in 400-425-450-550-$850^{\circ}C$ five-zone temperature conditions to make the ohmic contact. Drive-in temperature was changed in range of $830^{\circ}C$ to $890^{\circ}C$to obtain the sheet resistance $30{\sim}70\;{\Omega}/{\box}$ with $10\;\Omega}/{\box}$ intervals. Solar cell made in $890^{\circ}C$ as the drive-in temperature revealed 17.1% conversion efficiency which is best in this study. This solar cells showed $34.4\;mA/cm^2$ of the current density, 627 mV of the open circuit voltage and 79.3% of the fill factor.

Effect of Growth Factors in Doping Concentration of MBE Grown GaAs for Tunnel Diode in Multijunction Solar Cell

  • Park, Gwang-Uk;Gang, Seok-Jin;Gwon, Ji-Hye;Kim, Jun-Beom;Yeo, Chan-Il;Lee, Yong-Tak
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.308-309
    • /
    • 2012
  • One of the critical issues in the growth of multijunction solar cell is the formation of a highly doped Esaki interband tunnel diode which interconnects unit cells of different energy band gap. Small electrical and optical losses are the requirements of such tunnel diodes [1]. To satisfy these requirements, tens of nanometer thick gallium arsenide (GaAs) can be a proper candidate due to its high carrier concentration in low energy band gap. To obtain highly doped GaAs in molecular beam epitaxy, the temperatures of Si Knudsen cell (K-cell) for n-type GaAs and Be K-cell for p-type GaAs were controlled during GaAs epitaxial growth, and the growth rate is set to 1.75 A/s. As a result, the doping concentration of p-type and n-type GaAs increased up to $4.7{\times}10^{19}cm^{-3}$ and $6.2{\times}10^{18}cm^{-3}$, respectively. However, the obtained n-type doping concentration is not sufficient to form a properly operating tunnel diode which requires a doping concentration close to $1.0{\times}10^{19}cm^{-3}$ [2]. To enhance the n-type doping concentration, n-doped GaAs samples were grown with a lower growth rate ranging from 0.318 to 1.123 A/s at a Si K-cell temperature of $1,180^{\circ}C$. As shown in Fig. 1, the n-type doping concentration was increased to $7.7{\times}10^{18}cm^{-3}$ when the growth rate was decreased to 0.318 A/s. The p-type doping concentration also increased to $4.1{\times}10^{19}cm^{-3}$ with the decrease of growth rate to 0.318 A/s. Additionally, bulk resistance was also decreased in both the grown samples. However, a transmission line measurement performed on the n-type GaAs sample grown at the rate of 0.318 A/s showed an increased specific contact resistance of $6.62{\times}10^{-4}{\Omega}{\cdot}cm^{-2}$. This high value of contact resistance is not suitable for forming contacts and interfaces. The increased resistance is attributed to the excessively incorporated dopant during low growth rate. Further studies need to be carried out to evaluate the effect of excess dopants on the operation of tunnel diode.

  • PDF

Self-textured Al-doped ZnO transparent conducting oxide for p-i-n a-Si:H thin film solar cell

  • Kim, Do-Yeong;Lee, Jun-Sin;Kim, Hyeong-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.50.1-50.1
    • /
    • 2009
  • Transparent conductive oxides (TCOs) play an important role in thin-film solar cells in terms of low cost and performance improvement. Al-doped ZnO (AZO) is a very promising material for thin-film solar cellfabrication because of the wide availability of its constituent raw materials and its low cost. In this study, AZO films were prepared by low pressurechemical vapor deposition (LPCVD) using trimethylaluminum (TMA), diethylzinc(DEZ), and water vapor. In order to improve the absorbance of light, atypical surface texturing method is wet etching of front electrode using chemical solution. Alternatively, LPCVD can create a rough surface during deposition. This "self-texturing" is a very useful technique, which can eliminate additional chemical texturing process. The introduction of a TMA doping source has a strong influence on resistivity and the diffusion of light in a wide wavelength range.The haze factor of AZO up to a value of 43 % at 600 nm was achieved without an additional surface texturing process by simple TMA doping. The use of AZO TCO resulted in energy conversion efficiencies of 7.7 % when it was applied to thep-i-n a-Si:H thin film solar cell, which was comparable to commercially available fluorine doped tin oxide ($SnO_2$:F).

  • PDF