• Title/Summary/Keyword: solar burst

Search Result 47, Processing Time 0.031 seconds

Burst Locating Capability of the Korean Solar Radio Burst Locator (KSRBL)

  • Hwangbo, Jung-Eun;Bong, Su-Chan;Park, Sung-Hong;Lee, Dae-Young;Cho, Kyung-Suk;Lee, Jaejin;Park, Young-Deuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.1
    • /
    • pp.91-99
    • /
    • 2015
  • The Korean Solar Radio Burst Locator (KSRBL) is a solar radio spectrograph observing the broad frequency range from 0.245 to 18 GHz with the capability of locating wideband gyrosynchrotron bursts. Due to the characteristics of a spiral feed, the beam center varies in a spiral pattern with frequency, making a modulation pattern over the wideband spectrum. After a calibration process, we obtained dynamic spectra consistent with the Nobeyama Radio Polarimeter (NoRP). We compared and analyzed the locations of bursts observed by KSRBL with results from the Nobeyama Radioheliograph (NoRH) and Atmospheric Imaging Assembly (AIA). As a result, we found that the KSRBL provides the ability to locate flaring sources on the Sun within around 2'.

The Effect of Solar Burst in Communications System for Lunar Exploration (달 탐사 통신 시스템에서 태양 폭발의 영향)

  • Kim, Sanggoo;Hong, Heejin;Oh, Janghoon;Yoon, Dongweon;Hyun, Kwangmin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.309-316
    • /
    • 2013
  • Since the solar activity, one of the factors influencing on lunar communication systems, is to reach its maximum occurring at 11-year solar cycle in autumn 2013, the solar burst frequency and strength are expected to increase. The solar burst has an effect on earth magnetosphere and causes malfunction, loss of communication, and breakdown of various types of satellites and probes. These problems give rise to huge economic and physical loss. Therefore, we should analyze the effect of solar burst on lunar communications and minimize the expected loss. In this paper, we perform the analysis of the link model and link performance between a land station and a lunar orbiter under the solar burst for orbiter's survivability and stable communication channel operations.

A HIGH FREQUENCY TYPE II SOLAR RADIO BURST ASSOCIATED WITH THE 2011 FEBRUARY 13 CORONAL MASS EJECTION

  • Cho, Kyungsuk;Gopalswamy, Nat;Kwon, Ryunyoung;Kim, Roksoon;Yashiro, Seiji
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.111.1-111.1
    • /
    • 2012
  • We examine the relationship between a type II radio burst that started from an unusually high frequency of 425 MHz (fundamental component) and an associated white-light coronal mass ejection on 2011 February 13. The radio burst had a drift rate of 2.5 MHz/sec, indicating a relatively high shock speed. From SDO AIA observations we find that a loop-like erupting front sweeps across high density coronal loops near the start time of the burst (17:34:15 UT). We find fragmented structures of the type II burst, which indicates the signature of the shock propagating through the multiple loops. The deduced distance of shock formation (0.06 Rs) from flare center and speed of the shock (1100 km $s^{-1}$) using the measured density from AIA/SDO observations are comparable to the height (0.05 Rs, from the solar surface) and speed (700 km $s^{-1}$) of the CME leading edge observed by STEREO/EUVI. We conclude that the type II burst could be onset even in the low corona (41 Mm or 0.06 Rs, above the solar surface) if a fast CME shock passes through the high density loops.

  • PDF

Statistical analysis for the solar eruption effect on wireless communication (무선통신에 영향을 미치는 태양폭풍의 통계적 분석)

  • Park, Jae-Woo;Kim, Jung-Hoon;Han, Jin-Wook
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.107-111
    • /
    • 2011
  • In World War II, the solar eruption (solar flare) was revealed to make a significant effect to radar systems. The radio disturbance in February 28, 1942 was due to increased cosmic ray during solar maximum. Since such phenomena had been disclosed, many studies were accomplished on solar flare and solar particle event. Now various researches about the effects of solar flare on the spacecrafts, the airplanes flying across the pole, the radar systems, and wireless communication systems are studied. In this paper we analyzed the relationship between the harmful effect on the wireless communication by the solar eruption and the period of solar activity from the sunspot number data and the solar radio burst data for last 40 years.

AN EVALUATION OF THE SOLAR RADIO BURST LOCATOR (SRBL) AT OVRO

  • HwangBo, J.E.;Bong, Su-Chan;Cho, K.S.;Moon Y.J.;Lee, D.Y.;Park, Y.D.;Gary Dale E.;Dougherty Brian L.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.4
    • /
    • pp.437-443
    • /
    • 2005
  • The Solar Radio Burst Locator (SRBL) is a spectrometer that can observe solar microwave bursts over a wide band (0.1-18 GHz) as well as detect the burst locations without interferometry or mechanical scanning. Its prototype has been operated at Owens Valley Radio Observatory (OVRO) since 1998. In this study, we have evaluated the capability of the SRBL system in flux and radio burst location measurements. For this, we consider 130 microwave bursts from 2000 to 2002. The SRBL radio fluxes of 53 events were compared with the fluxes from USAF/RSTN and the burst locations of 25 events were compared with the optical flare locations. From this study, we found: (1) there is a relatively good correlation (r = 0.9) between SRBL flux and RSTN flux; (2) the mean location error is about 8.4 arcmin and the location error (4.7 arcmin) of single source events is much smaller than that (14.9 arcmin) of multiple source events; (3) the minimum location error usually occurred just after the starting time of burst, mostly within 10 seconds; (4) there is a possible anti-correlation (r = -0.4) between the pointing error of SRBL antenna and the location error. The anti-correlation becomes more evident (r=-0.9) for 6 strong single source events associated with X-class flares. Our results show that the flux measurement of SRBL is consistent with that of RSTN, and the mean location error of SRBL is estimated to be about 5 arcmin for single source events.

A Solar Stationary Type IV Radio Burst and Its Radiation Mechanism

  • Liu, Hongyu;Chen, Yao;Cho, Kyungsuk;Feng, Shiwei;Vasanth, Veluchamy;Koval, Artem;Du, Guohui;Wu, Zhao;Li, Chuanyang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.52.2-53
    • /
    • 2018
  • A stationary Type IV (IVs) radio burst was observed on September 24, 2011. Observations from the Nançay RadioHeliograph (NRH) show that the brightness temperature (TB ) of this burst is extremely high, over 10^11K at 150 MHz and over 10^8K in general. The degree of circular polarization (q ) is between -60%~-100%, which means that it is highly left-handed circularly polarized. The flux-frequency spectrum follows a power-law distribution, and the spectral index is considered to be roughly -3~-4 throughout the IVs. Radio sources of this event are located in the wake of the coronal mass ejection and are spatially dispersed. They line up to present a formation in which lower-frequency sources are higher. Based on these observations, it is suggested that the IVs was generated through electron cyclotron maser emission.

  • PDF

Dependence of solar proton events on their associated activities: solar and interplanetary type II radio burst, flare, and CME

  • Park, Jinhye;Youn, Saepoom;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.80.2-81
    • /
    • 2016
  • We investigate the dependence of solar proton events (SPEs) on solar and interplanetary type II bursts associated with solar flares and/or CME-driven shocks. For this we consider NOAA solar proton events from 1997 to 2012 and their associated flare, CME, and type II radio burst data with the following subgroups: metric, decameter-hectometric (DH), and meter-to-kilometric (m-to-km) type II bursts. The primary findings of this study are as follows. First, about half (52%) of the m-to-km type II bursts are associated with SPEs and its occurrence rate is higher than those of DH type II bursts (45%) and metric type II bursts (19%). Second, the SPE occurrence rate strongly depends on flare strength and source longitude, especially for X-class flare associated ones; it is the highest in the central region for metric (46%), DH (54%), and m-to-km (75%) subgroups. Third, the SPE occurrence rate is also dependent on CME linear speed and angular width. The highest rates are found in the m-to-km subgroup associated with CME speed 1500 kms-1: partial halo CME (67%) and halo CME (55%). Fourth, in the relationships between SPE peak fluxes and solar eruption parameters (CME linear speed, flare flux, and longitude), SPE peak flux is mostly dependent on SPE peak flux for all three type II bursts (metric, DH, m-to-km). It is noted that the dependence of SPE peak flux on flare peak flux decreases from metric to m-to-km type II burst.

  • PDF

Analysis of Solar Microwave Burst Spectrum, I. Nonuniform Magnetic Field

  • Lee, Jeongwoo
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.211-218
    • /
    • 2018
  • Solar microwave bursts carry information about the magnetic field in the emitting region as well as about electrons accelerated during solar flares. While this sensitivity to the coronal magnetic field must be a unique advantage of solar microwave burst observations, it also adds a complexity to spectral analysis targeted to electron diagnostics. This paper introduces a new spectral analysis procedure in which the cross-section and thickness of a microwave source are expressed as power-law functions of the magnetic field so that the degree of magnetic inhomogeneity can systematically be derived. We applied this spectral analysis tool to two contrasting events observed by the Owens Valley Solar Array: the SOL2003-04-04T20:55 flare with a steep microwave spectrum and the SOL2003-10-19T16:50 flare with a broader spectrum. Our analysis shows that the strong flare with the broader microwave spectrum occurred in a region of highly inhomogeneous magnetic field and vice versa. We further demonstrate that such source properties are consistent with the magnetic field observations from the Michelson Doppler Imager instrument onboard the Solar and Heliospheric Observatory (SOHO) spacecraft and the extreme ultraviolet imaging observations from the SOHO extreme ultraviolet imaging telescope. This spectral inversion tool is particularly useful for analyzing microwave flux spectra of strong flares from magnetically complex systems.

Multi-wavelength Observations of Two Explosive Events and Their Effects on the Solar Atmosphere

  • Admiranto, Agustinus G.;Priyatikanto, Rhorom
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.197-205
    • /
    • 2016
  • We investigated two flares in the solar atmosphere that occurred on June 3, 2012 and July 6, 2012 and caused propagation of Moreton and EIT waves. In the June 3 event, we noticed a filament winking which presumably was caused by the wave propagation from the flare. An interesting feature of this event is that there was a reflection of this wave by a coronal hole located alongside the wave propagation, but not all of this wave was transmitted by the coronal hole. Using the running difference method, we calculated the speed of Moreton and EIT waves and we found values of 926 km/s before the reflection and 276 km/s after the reflection (Moreton wave) and 1,127 km/s before the reflection and 46 km/s after the reflection (EIT wave). In the July 6 event, this phenomenon was accompanied by type II and type III solar radio bursts, and we also performed a running difference analysis to find the speed of the Moreton wave, obtaining a value of 988 km/s. The speed derived from the analysis of the solar radio burst was 1,200 km/s, and we assume that this difference was caused by the different nature of the motions in these phenomena, where the solar radio burst was caused by the propagating particles, not waves.

KSRBL Data Calibration and Note for Users

  • Bong, Su-Chan;Park, Sung-Hong;Hwangbo, Jung-Eun;Park, Young-Deuk;Lee, Dae-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.91.2-91.2
    • /
    • 2013
  • The Korean Solar Radio Burst Locator (KSRBL) is a solar radio spectrograph observing the frequency range between 0.245-18 GHz with the capability of locating the wideband gyrosynchrotron bursts. Its calibration process consists of antenna calibration, flux calibration, and demodulation. Antenna calibration is to determine the position, the width, and the peak value of the beam, flux calibration is to determine the conversion factor between the measured unit to the Solar Flux Unit (SFU), and demodulation is to determine the burst position and remove the modulation pattern. We introduce the current calibration software and some information that potential users may concern.

  • PDF