• Title/Summary/Keyword: solar array deployment

Search Result 18, Processing Time 0.025 seconds

Development of Multi-Purpose Satellite 2 with Deployable Solar Arrays: Part 1. Dynamic Modeling (다목적2호기 태양전지판의 전개시스템 개발: PART 1. 동적 모델링)

  • Gwak,Mun-Gyu;Heo,Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.38-45
    • /
    • 2003
  • This research is concerned with the dynamic modeling of the multi-purpose satellite with deployable solar arrays equipped with strain energy hinges(SEH). To this end, we proposed the use of the equivalent torsional spring for the SEH and derived the equations of motion assuming that the satellite and solar arrays are being rigid. We also considered the effect of the support string for the ground experiment model, which has been observed as a critical factor affecting the deployment in the ground experiments. From the numerical simulation results, it is found that solar arrays are deployed in a similar pattern but the hub motions are different because of the support strings. It was concluded that the non-gravity deployment of the solar arrays can be approximately simulated by the ground experimental facility. The effects of the support string are also investigated by varying the length of the string. It was found that the current length of the string is adequate for the ground experiment. Ground experimental results will follow.

Design of Power Subsystem Simulator for KOMPSAT Using Object Oriented Methods (객체지향기법을 이용한 다목적 실용위성 전력계 시뮬레이터 설계)

  • Joung Gyu Bum;Lee Sanguk;Cho Sungki;Kim Jae Hoon;Han Kyoungmin;Choi Young Kyu
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.681-684
    • /
    • 2002
  • In this paper, electrical power subsystem(EPS) simulator for KOMPSAT 2 has been analyzed designed and simulated by object oriented design(OOP) method. To design EPS simulator, the EPS modules, which modeled solar array, solar array regulator, deployment device controller, battery, power control unit, and EPS control unit, are modeled. To verify the EPS simulator, the modules has been simulated. By OOP designs, the EPS simulator is very powerful because this method is applicable to design other EPS simulator.

  • PDF

Development of Deployment Test Simulator for Satellite Solar Array (위성체 태양전지판 전개시험용 모사장치 개발)

  • 김홍배;문상무;우성현;오진호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.984-984
    • /
    • 2001
  • 위성체의 태양전지판과 안테나와 같은 구조물은 발사시 체적을 최소화하기 위하여 설정궤도에 도달하기 전까지 접혀진 상태로 운반되며, 설정궤도에 도달 후 고유의 임무를 수행하기 위하여 안테나, 태양전지판 및 로보트 팔과 같은 이차 부착물의 전개 작업을 수행한다. 이러한 작업은 위성체 및 발사체의 고유임무를 수행하는데 매우 중요한 작업이며, 이 작업의 성공 유무가 우주비행체 임무의 성패를 좌우한다.

  • PDF

Hot Firing Test of a Quadrature NEA SSD9103S1 Configuration

  • Ja-Chun, Koo;Hee-Sung, Park;Max, Guba
    • International Journal of Aerospace System Engineering
    • /
    • v.9 no.2
    • /
    • pp.1-9
    • /
    • 2022
  • The NEA release mechanism is used to provide restraint and release functions with low shock for critical deployment operations on solar arrays after launch. The GK3 solar array consists of 2 wings and 6 hold down points per panel. The NEA SSD9103S1 is a part of the GK3 solar array hold-down and release mechanism. Each NEA unit is equipped with two Z-diodes which provide power to a NEA unit connected in series after actuation of the fuse wire. This paper presents the hot firing test results of a quadrature NEA SSD9103S1 configuration. One output powers a maximum of 4 NEA SSD9103S1 units simultaneously. The necessary actuation pulse duration has been determined to meet margin requirement for thermal energy of minimum 4. Actuation thermal energy difference is about 6.6% between each half of two fired serial NEAs. Thermal energy margin at worst case is minimum 5.9 in case of an actuation pulse duration of 500 ms. Two series Zener impedance depend on current applied has been characterized by an additional actuation after all fuse wires are open circuit. Total number of actuation commands to the GK3 NEA unit reduce drastically from 24 in case of single NEA configuration down to 8 in case of parallel and quadrature NEA configurations. It can be accommodated by the existing HP2U Pyro design without any impact.

COMS Shock Test Assessment by Using the Extrapolation Method (외삽법을 이용한 천리안위성 충격시험 분석)

  • Lee, Ho-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.439-445
    • /
    • 2012
  • The COMS(Communication, Ocean, and Meteorological Satellite) is subjected to shock loads when the stage or fairing of a launch vehicle is separated and the satellite is separated from the launch vehicle during the launch vehicle flight. And, after the satellite is separated from the launcher, the COMS is subjected to shock loads when the solar array is deployed, Ka-Band communication antenna is deployed, and meteorological imager radiator cover is released. In order to validate the satellite safety against these shock loads on ground, shock tests were performed. In this paper, the shock tests performed in the course of the COMS development are described, and the method to assess the test result is presented with an example of Geostationary Ocean Color Imager(GOCI). In Ariane-5 launch vehicle, the clampband release shock for satellite separation is lower than the fairing or stage separation. In this paper, the extrapolation method to take into account the maximum shock load from the launch vehicle by using the satellite separation shock test result is also introduced.

A Study on the Satellite Launch Vehicle Separation Detection Interface to Improve the Reliability of the Launch and Early Operation Phase

  • Lee, Nayoung;Kwon, Dong-young;Jeon, Hyeon-Jin;Jeon, Moon-Jin;Cheon, Yee-Jin
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.57-63
    • /
    • 2021
  • The launch vehicle (LV) separation detection interface of the satellite, which is designed to initiate the launch and early operation phase (LEOP) for S-band data transmission and the solar array deployment after the LV separation, is one of the hazard items at the launch site. Therefore, this interface should satisfy the single-fault tolerance requirement for the range safety. In this paper, we discuss the LV separation detection interfaces for two different satellite launch configurations and propose a method to guarantee for the satellite to start the LEOP even under the emergency case such as a partial separation from the LV. Furthermore, the proposed method meets the range safety requirement of the launch site. As this method only changes the external harness configuration of the satellite, it increases the reliability of the satellite early operation without any modification of the existing internal logics to detect the separation event.

Spacecraft Bus Initial Activation and Checkout of a LEO Satellite (저궤도 위성의 본체 초기 점검)

  • Jeon, Moon-Jin;Kwon, Dong-Young;Kim, Day-Young
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.33-38
    • /
    • 2012
  • A LEO Satellite performs automatic initial operations by FSW after separation from a launch vehicle. After initial operation by FSW is finished, preparation for normal operation is performed by ground during bus initial activation and checkout phase. First of all, we check state of health of the satellite including solar array deployment status. After then, each unit of spacecraft bus is activated and checked. After activation and checkout of every units used for normal operation, we check maneuver performance for imaging mission and orbit maintenance performance. Because the Bus IAC is performed during limited ground contact time, every detailed procedure must be designed considering ground contact. Therefore, the Bus IAC procedure is separated into several parts based on ground contact duration. In addition, the procedures for every possible operation including expected situation as results of IAC procedures and unexpected contingency situation must be prepared. The contingency operation is also designed based on ground contact duration. The LEO satellite was successfully launched and the Bus IAC was successfully performed. In this paper, we explain design concepts and execution results of Bus IAC.

A Design of Fire-Command Synchronous Satellite Pyrotechnic Circuit (점화 명령에 동조된 인공위성 파이로테크닉 회로 설계)

  • Koo, Ja Chun;Ra, Sung Woong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.5
    • /
    • pp.81-92
    • /
    • 2013
  • The satellite includes many release mechanisms such as solar array deployment, antenna deployment, cover to protect contamination in scientific equipment, pyro value of the propulsion subsytem, and bypass device in Li-Ion cell module. A drive the initiators is a critical to the successful mission because the initiators of release mechanism driving by the pyrotechnic circuit is operated in single short. The pyrotechnic circuit has to provide switching network for safety. A typical switching network has defect consisting of high current rating fire switch to handle switching transient current during fire the initiator. The pyrotechnic circuit is required some form of power conditioning to reduce the peak power demanded from the bus if the initiators are to be fired from the main bus. This paper design a pyrotechnic circuit synchronized to the fire-command to activate the fire switch to overcome use high current rating fire switch to handle switching transient current during fire the initiator. The pyrotechnic circuit provides a current limited widow pulse for fire current synchronized to the fire-command to insure that fire switch will only carry the current but never switch it. The current limited widow pulse for fire current can be possible to use low current rating and light mass switch in switching network. The current limit function in the pyrotechnic circuit reduces supply voltage to initiator and provides the effect of power conditioning function to reduce peak bus power. The pyrotechnic circuit to apply satellite development on geostationary orbit is verified the function by test in development model.