• Title/Summary/Keyword: sol-gel immobilization

Search Result 13, Processing Time 0.018 seconds

Concurrent Electrocatalysis and Sensing of Hydrazine and Sulfite and Nitrite Ions using Electrodeposited Gold Nanostructure-Modified Electrode

  • Seo, Yeji;Manivannan, Shanmugam;Kang, Inhak;Shin, Woo-Seung;Kim, Kyuwon
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.25-34
    • /
    • 2017
  • Concurrent electrocatalysis and sensing of hydrazine, sulfite ions, and nitrite ions in a mixture were studied using electrodes modified by electrodeposited Au nanostructures (NSs). The ${\beta}$-cyclodextrin-mixed silicate sol-gel composite was drop-casted on the electrode surface and nucleation guided by ${\beta}$-cyclodextrin occurred, followed by the electrodeposition of Au NSs. The additive, ${\beta}$-cyclodextrin, played an evident role as a structure-directing agent; thus, small raspberry-like Au NSs were obtained. The modified electrodes were characterized by surface characterization techniques and electrochemical methods. The Au NSs-modified electrodes effciently electrocatalyzed the oxidation of toxic molecules such as hydrazine and sulfite and nitrite ions even in the absence of any other electron transfer mediator or enzyme immobilization. Well-resolved oxidation peaks along with decreased overpotentials were noticed during the electrooxidation process. The fabricated Au nanostructured electrode clearly distinguished the electrooxidation peaks of each of the three analytes from their mixture.

Stabilization/Solidification of Radioactive LiCl-KCl Waste Salt by Using SiO2-Al2O3-P2O5 (SAP) inorganic composite: Part 1. Dechlorination Behavior of LiCl-KCl and Characteristics of Consolidation (SiO2-Al2O3-P2O5 무기복합체를 이용한 LiCl-KCl 방사성 폐기물의 안정화/고형화: Part 1. LiCl-KCl의 탈염화 반응거동 및 고형화특성)

  • Cho, In-Hak;Park, Hwan-Seo;Ahn, Soo-Na;Kim, In-Tae;Cho, Yong-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.45-53
    • /
    • 2012
  • The metal chloride wastes from a pyrochemical process to recover uranium and transuranic elements has been considered as a problematic waste difficult to apply to a conventional solidification method due to the high volatility and low compatibility with silicate glass. In this study, a dechlorination approach to treat LiCl-KCl waste for final disposal was adapted. In this study, a $SiO_2-Al_2O_3-P_2O_5$ (SAP) inorganic composite as a dechlorination agent was prepared by a conventional sol-gel process. By using a series of SAPs, the dechlorination behavior and consolidation of reaction products were investigated. Different from LiCl waste, the dechlorination reaction occurred mainly at two temperature ranges. The thermogravimetric test indicated that the first reaction range was about $400^{\circ}C$ for LiCl and the second was about $700^{\circ}C$ for KCl. The SAP 1071 (Si/Al/P=1/0.75/1 in molar) was found to be the most favorable SAP as a dechlorination agent under given conditions. The consolidation test revealed that the bulk shape and the densification of consolidated forms depended on the SAP/Salt ratios. The leaching test by PCT-A method was performed to evaluate the durability of consolidated forms. This study provided the basic information on the dechlorination approach. Based on the experimental results, the dechlorination method using a $SiO_2-Al_2O_3-P_2O_5$ (SAP) could be considered as one of alternatives for the immobilization of waste salt.

Stabilization/Solidification of Radioactive LiCl-KCl Waste Salt by Using SiO2-Al2O3-P2O5 (SAP) Inorganic Composite: Part 2. The Effect of SAP Composition on Stabilization/Solidification (SiO2-Al2O3-P2O5 (SAP) 무기복합체를 이용한 LiCl-KCl 방사성 폐기물의 안정화/고형화: Part 2. SAP조성에 따른 안정화/고형화특성 변화)

  • Ahn, Soo-Na;Park, Hwan-Seo;Cho, In-Hak;Kim, In-Tae;Cho, Yong-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.27-36
    • /
    • 2012
  • Metal chloride waste is generated as a main waste streams in a series of electrolytic processes of a pyrochemical process. Different from carbonate or nitrate salt, metal chloride is not decomposed into oxide and chlorine but it is just vaporized. Also, it has low compatibility with conventional silicate glasses. Our research group adapted the dechlorination approach for the immobilization of waste salt. In this study, the composition of SAP ($SiO_2-Al_2O_3-P_2O_5$) was adjusted to enhance the reactivity and to simplify the solidification process as a subsequent research. The addition of $Fe_2O_3$ into the basic SAP decreased the SAP/Salt ratio in weight from 3 for SAP 1071 to 2.25 for M-SAP( Fe=0.1). The experimental results indicated that the addition of $Fe_2O_3$ increased the reactivity of M-SAP with LiCl-KCl but the reactivity gradually decreased above Fe=0.1. Also, introducing $B_2O_3$ into M-SAP requires no glass binder for the consolidation of reaction products. U-SAP ($SiO_2-Al_2O_3-Fe_2O_3-P_2O_5-B_2O_3$) could effectively dechlorinate the LiCl-KCl waste and its reaction product could be consolidated as a monolithic form without a glass binder. The leaching test result indicated that U-SAP 1071 was more durable than other SAPs wasteform. By using U-SAP, 1 g of waste salt could generated 3~4 g of wasteform for final disposal. The final volume would be about 3~4 times lower than the glass-bonded sodalite. From these results, it could be concluded that the dechlorination approach using U-SAP would be one of prospective methods to manage the volatile waste salt.