• 제목/요약/키워드: soil-pile-structure interaction

검색결과 116건 처리시간 0.027초

The Finite Element Analysis of Foundation Layer by Introducing Interface Element (접합요소를 도입한 기초지반의 유한요소해석)

  • 양극영;이대재
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제15권1호
    • /
    • pp.9-20
    • /
    • 2002
  • The purpose of this research is to develop computational procedures for studying nonlinear soil-structure interaction Problems. In orders to study soil-structure interaction behavior, the finite element analysis for the strip footing subjected to both vortical and lateral loads, and foundation layer reinforced with sheet pile are considered, interface elements are used between the footing and the soil to model the interaction behavior The main analyzed results are as follows; 1. For the prediction of settlement and lateral displacement, the result due to interface element was evaluated larger then without interface element. 2. For the determination of ultimate bearing capacity, the value using interface element appeared smaller by 12%, which was safe. 3. The horizontal and vertical displacement of strip footing affected by the presence of interface element.

Numerical modelling of a pile-supported embankment using variable inertia piles

  • Dia, Daniel;Grippon, Jerome
    • Structural Engineering and Mechanics
    • /
    • 제61권2호
    • /
    • pp.245-253
    • /
    • 2017
  • The increasing lack of good quality soils allowing the development of roadway, motorway, or railway networks, as well as large scale industrial facilities, necessitates the use of reinforcement techniques. Their aim is the improvement of the global performance of compressible soils, both in terms of settlement reduction and increase of the load bearing capacity. Among the various available techniques, the improvement of soils by incorporating vertical stiff piles appears to be a particularly appropriate solution, since it is easy to implement and does not require any substitution of significant soft soil volumes. The technique consists in driving a group of regularly spaced piles through a soft soil layer down to an underlying competent substratum. The surface load being thus transferred to this substratum by means of those reinforcing piles, which illustrates the case of a piled embankment. The differential settlements at the base of the embankment between the soft soil and the stiff piles lead to an "arching effect" in the embankment due to shearing mechanisms. This effect, which can be accentuated by the use of large pile caps, allows partial load transfer onto the pile, as well as surface settlement reduction, thus ensuring that the surface structure works properly. A technique for producing rigid piles has been developed to achieve in a single operation a rigid circular pile associated with a cone shaped head reversed on the place of a rigid circular pile. This technique has been used with success in a pile-supported road near Bourgoin-Jallieu (France). In this article, a numerical study based on this real case is proposed to highlight the functioning mode of this new technique in the case of industrial slabs.

Influence Zones subjected to Pile-Soil-Tunnelling Interaction (파일-흙-터널의 상호거동에 따른 영향권)

  • Lee, Yong-Joo;Bassett, R. H.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1351-1360
    • /
    • 2005
  • New construction for public transport in congested urban areas will involve tunnel construction adjacent to existing building or bridge foundations and services due to the lack of surface space. Therefore, careful assessment of the important underground structure-soil-tunnelling interaction is relatively new, currently only limited information is available. In this study, the authors carried out FE analysis and the laboratory model test using the photogrammetric technique and suggested the influence zones associated with the normalised pile tip settlement during new tunnel construction.

  • PDF

A Study of Soil Spring Model Considering the Seismic Load in Response Spectrum Analysis of Pile-Supported Structure (잔교식 말뚝 구조물의 응답스펙트럼해석 시 지진하중을 고려한 지반 스프링 모델 제안)

  • Yun, Jung-Won;Kim, Jongkwan;Lee, Seokhyung;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • 제38권9호
    • /
    • pp.5-17
    • /
    • 2022
  • Recently, several studies have been conducted on virtual fixed-point and elastic soil spring methods to simulate the soil-pile interaction in response to spectrum analysis of pile-supported structures. However, the soil spring stiffness has not been properly considered due to the seismic load magnitude, and studies on the response spectrum analysis of pile-supported structures considering this circumstance are inadequate. Therefore, in this study, the response spectrum analysis was performed considering the soil spring stiffness according to the seismic load magnitude, and the dynamic behavior of the pile-supported structure was evaluated by comparing it with existing virtual fixed-point and elastic soil spring methods. Comparing the experiment and analysis, the moment differences occurred up to 117% and 21% in the virtual fixed-point and elastic soil spring models, respectively. Moreover, when the analysis was performed using an API p-y curve considering the soil spring stiffness according to the seismic load magnitude, the moment difference between the experiment and analysis was derived at a maximum of < 4%, and it is the most accurate method to simulate the experimental model response.

Study on Integrity Assessment of Pile Foundation Based on Seismic Observation Records

  • KASHIWA, Hisatoshi
    • International Journal of High-Rise Buildings
    • /
    • 제9권4호
    • /
    • pp.369-376
    • /
    • 2020
  • Given the importance of quickly recovering livelihoods and economic activity after an earthquake, the seismic performance of the pile foundation is becoming more critical than before. In order to promote seismic retrofit of the pile foundations, it is necessary to develop a method for evaluating the seismic performance of the pile foundation based on the experimental data. In this paper, we focus on the building that was suffered severe damage to the pile foundation, conduct simulation analyses of the building, and report the results of evaluating the dynamic characteristics when piles are damaged using a system identification method. As a result, an analysis model that can accurately simulate the behavior of the damaged building during an earthquake was constructed, and it was shown that the system identification method could extract dynamic characteristics that may damage piles.

Development of Three-dimensional Approximate Analysis Method for Piled Raft Foundations (말뚝지지 전면기초의 3차원 근사해석기법 개발)

  • Cho, Jae-Yeon;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • 제28권4호
    • /
    • pp.67-78
    • /
    • 2012
  • A three-dimensional approximate computer-based method, YSPR (Yonsei Piled Raft), was developed for analysis of behavior of piled raft foundations. The raft was modeled as a flat shell element having 6 degrees of freedom at each node and the pile was modeled as a beam-column element. The behaviors of pile head and soil were controlled by using $6{\times}6$ stiffness matrix. To model the non-linear behavior, the soil-structure interaction between soil and pile was modeled by using nonlinear load-transfer curves (t-z, q-z and p-y curves). Comparison with previous model and FEM analysis showed that YSPR gave similar load-displacement behaviors. Comparison with field measurement also indicated that YSPR gave a reasonable result. It was concluded that YSPR could be effectively used in analysis and design of piled raft foundations.

Numerical Simulation of Dynamic Soil-pile Interaction for Dry Condition Observed in Centrifuge Test (원심모형실험에서 관측된 건조 지반-말뚝 동적 상호작용의 수치 모델링)

  • Kown, Sun-Yong;Kim, Seok-Jung;Yoo, Min-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • 제32권4호
    • /
    • pp.5-14
    • /
    • 2016
  • Numerical simulation of dynamic soil-pile-structure interaction embedded in a dry sand was carried out. 3D model of the dynamic centrifuge model tests was formulated in a time domain to consider nonlinear behavior of soil using the finite difference method program, FLAC3D. As a modeling methodology, Mohr-Coulomb criteria was adopted as soil constitutive model. Soil nonlinearity was considered by adopting the hysteretic damping model, and an interface model which can simulate separation and slip between soil and pile was adopted. Simplified continuum modeling (Kim et al., 2012) was used as boundary condition to reduce analysis time. Calibration process for numerical modeling results and test results was performed through the parametric study. Verification process was then performed by comparing numerical modeling results with another test results. Based on the calibration and validation procedure, it is identified that proposed modeling method can properly simulate dynamic behavior of soil-pile system in dry condition.

Comparison of Modeling Methods of a Pile Foundation in Seismic Analysis of Bridge Piers (교각의 내진설계를 위한 말뚝기초의 모델링 기법 비교)

  • 김나엽;김성렬;전덕찬;김명모
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제6권6호
    • /
    • pp.25-32
    • /
    • 2002
  • In the seismic designing of bridges, the pile foundation of bridge piers generally have been modeled to have a fixed end for its convenience and conservative designing. The fixed-end assumption, however, produces very conservative results in terms of the pier forces. Therefore, many other design methods are evolved to consider the flexibility of the pile foundation. In this study, the response spectrum analysis was performed for a bridge pier having a pile foundation. The shear force, moment, and displacement, which occurred at the pier column under an earthquake loading, were compared to analyze the effects of the modeling method, soil condition and the input earthquake response spectrum. In most cases, the fixed-end model gives larger design forces than flexible foundation models. However, when a long period earthquake is applied to the bridge pier on a soft clay foundation, it is found that the flexible foundation models give larger design forces than the fixed-end model. In the end, the reliability of several flexible foundation models was verified by comparing their results with those of a numerical analysis that considers the soil-structure interaction phenomenon in a rigorous manner.

Different approaches for numerical modeling of seismic soil-structure interaction: impacts on the seismic response of a simplified reinforced concrete integral bridge

  • Dhar, Sreya;Ozcebe, Ali Guney;Dasgupta, Kaustubh;Petrini, Lorenza;Paolucci, Roberto
    • Earthquakes and Structures
    • /
    • 제17권4호
    • /
    • pp.373-385
    • /
    • 2019
  • In this article, different frequently adopted modeling aspects of linear and nonlinear dynamic soil-structure interaction (SSI) are studied on a pile-supported integral abutment bridge structure using the open-source platform OpenSees (McKenna et al. 2000, Mazzoni et al. 2007, McKenna and Fenves 2008) for a 2D domain. Analyzed approaches are as follows: (i) free field input at the base of fixed base bridge; (ii) SSI input at the base of fixed base bridge; (iii) SSI model with two dimensional quadrilateral soil elements interacting with bridge and incident input motion propagating upwards at model bottom boundary (with and without considering the effect of abutment backfill response); (iv) simplified SSI model by idealizing the interaction between structural and soil elements through nonlinear springs (with and without considering the effect of abutment backfill response). Salient conclusions of this paper include: (i) free-field motions may differ significantly from those computed at the base of the bridge foundations, thus put a significant bias on the inertial component of SSI; (ii) conventional modeling of SSI through series of soil springs and dashpot system seems to stay on the safer side under dynamic conditions when one considers the seismic actions on the structure by considering a fully coupled SSI model; (iii) consideration of abutment-backfill in the SSI model positively affects the general response of the bridge, as a result of large passive resistance that may develop behind the abutments.

The natural frequency measurement for a suction pile about the intrusion depth (관입깊이에 따른 석션파일 고유진동수 측정 및 분석)

  • Lee, Jong-Hwa;Kim, Min-Su;Seo, Yoon-Ho;Kim, Bong-Ki;Lee, Ju-Shin;Yu, Mu-Sung;Kwak, Dae-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.495-496
    • /
    • 2014
  • The suction method is the substructure installation using the water pressure difference generated by discharging water inside the pile by the pumping operation, after the intrusion by the self-weights of a large hollow steel pipe or a concrete structure. It is known as the low-noise and low-vibration method against the general pile driven method and eco-friendly, also. Most current design and safety assessment of the support structure and considering only the static load, however, the importance of dynamic behavior becomes magnified as the size of wind power generator increases. This study measures the natural frequency of the suction pile prototype about the penetration depth as a part of basic research and analyzed the interaction between the soil and the structure.

  • PDF