• 제목/요약/키워드: soil-air exchange

검색결과 63건 처리시간 0.027초

지중열교환기의 종류에 따른 열전달 성능에 관한 연구 (A study on the Heat Transfer Performance according to Ground Heat Exchanger Types)

  • 황석호;송두삼
    • KIEAE Journal
    • /
    • 제10권4호
    • /
    • pp.75-80
    • /
    • 2010
  • Generally, ground-source heat pump (GSHP) systems have a higher performance than conventional air-source systems. However, the major fault of GSHP systems is their expensive boring costs. Therefore, it is important issue that to reduce initial cost and ensure stability of system through accurate prediction of the heat extraction and injection rates of the ground heat exchanger. Conventional analysis methods employed by line source theory are used to predict heat transfer rate between ground heat exchanger and soil. Shape of ground heat exchanger was simplified by equivalent diameter model, but these methods do not accurately reflect the heat transfer characteristics according to the heat exchanger geometry. In this study, a numerical model that combines a user subroutine module that calculates circulation water conditions in the ground heat exchanger and FEFLOW program which can simulate heat/moisture transfer in the soil, is developed. Heat transfer performance was evaluated for 3 different types ground heat exchanger(U-tube, Double U-tube, Coaxial).

산림토양(山林土壤)의 산성화(酸性化) 민감도(敏感度)에 대(對)한 실험적(實驗的) 평가(評價)(I) -산중화(酸中和) 반응(反應) 예측모형(豫測模型)의 활용(活用)- (Experimental Assessment of Forest Soil Sensitivity to Acidification -Application of Prediction Models for Acid Neutralization Responses-)

  • 이승우;박관수
    • 한국산림과학회지
    • /
    • 제90권1호
    • /
    • pp.133-138
    • /
    • 2001
  • 토양의 산중화 반응 결과로 나타나는 염기성 양이온의 유실과 Al의 가동성 증가는 산림 쇠퇴징후가 나타난 대기오염 지역의 공통된 특징이다. 따라서 산림토양의 산성화 민감도를 결정짓는 산중화 반응을 보다 용이하게 평가하기 위하여 토양산성도 인자를 이용한 산중화 반응 예측모형을 개발하였다. 조사대상지인 남산, 강화, 울산, 홍천의 토양산성도는 동일 지역순으로 높았으며(P<0.05), 이는 토양칼럼 실험에서 추가 산유입($16.7mmol_c/kg$)에 대한 지역별 총 산중화능($ANC_H$)과 상반된 결과였다. 모든 지역에서 염기치환과 Al 용해가 주된 산중화 기작이었으며, 총 산중화능이 낮은 지역일수록 염기치환 산중화능은 낮은 반면 Al 용해 산중화능이 높게 발휘되었다. 황산이온 흡착에 의한 산중화능은 대조지역인 홍천에서 가장 높았으나 산중화율은 6.4%로 매우 낮은 수준이었다. 토양산성도 인자를 이용하여 토양산중화 반응을 예측하기 위한 단순회귀모형과 다중회귀모형의 수정결정계수는 각각 0.52(P<0.04)와 0.89(P<0.01) 이상으로 이들 회귀모형이 토양산성화 민감도와 관련된 산중화 반응을 예측하는데 보다 용이하게 활용될 것으로 판단되었다.

  • PDF

지열 시스템의 도입이 지중온도환경에 미치는 영향에 대한 해석적 검토 (Numerical Analysis of the Effect of Ground Source Heat Pump Systems on the Underground Temperature)

  • 남유진
    • 설비공학논문집
    • /
    • 제25권8호
    • /
    • pp.427-431
    • /
    • 2013
  • Ground heat pump systems utilize the annually stable underground temperature to supply heat for space heating and cooling. The underground temperature affects not only the underground ecosystem, but also the performance of these systems. However, in spite of the widespread use of these systems, there have been few researches on the effect of the systems on underground temperature. In this research, case studies with numerical simulation have been conducted, in order to estimate the effect of ground heat pump systems on underground temperature. The simulation was coupled with the ground water-ground heat transfer model and the ground surface heat transfer model. In the result, it was found that the underground change depends on the heat transfer from the ground surface, the heat exchange rate, and the heat conductivity of soil.

Rapid Soil Quality Assessment for Sustainable Agricultural Systems at Songco, Lantapan, Bukidnon, Philippines

  • Daquiado, Nonilona P.
    • 한국환경농학회:학술대회논문집
    • /
    • 한국환경농학회 2011년도 30주년 정기총회 및 국제심포지엄
    • /
    • pp.177-187
    • /
    • 2011
  • This study was conducted to determine some physical and chemical properties of the soil and their relationship to spectroscopic-based (visible range) analytical methods while evaluating soil organic matter fractions and soil quality in degraded and non-degraded soils in a wide range of environments. Soil samples were collected from the different landscape positions of cultivated and noncultivated soils, and the latter from the same landscape positions but with different vegetation, at Songco, Lantapan, Bukidnon. The physical and chemical properties of the soils were determined at the SPAL, CMU, Musuan, Bukidnon while the metagenomic properties were determined at the Laboratory of the University of Missourri, Missourri, USA. Bulk density and air dry soil strength values of the soils from the cultivated areas were generally higher than those of the uncultivated areas. Also, soils at the summit generally had lower bulk density and soil strength values than the other landscape positions. Moreover, soils planted to camote (Ipomoea batatas) had higher bulk density and soil strength values compared to soils grown to pepper under the trees. Exchangeable calcium (Ca), magnesium (Mg), and potassium (K) and cation exchange capacity (CEC) of the soils were generally higher in uncultivated areas than those of the cultivated areas. A similar trend was observed for the potassium permanganate ($KMnO_4$)-oxidizable organic C contents determined by spectroscopic method and the total C contents determined by the Walkley-Black method. The $KMnO_4$-oxidizable organic C contents determined by spectroscopic method and the total C contents determined by the Walkley-Black method were closely related ($r=0.631^{**}$). Hence, the former method shows promise in assessing soil quality as it is a rapid test, relatively low cost and can be distributed as a field kit either with a portable spectrometer or with a color chart.

  • PDF

Comparison of the effect of peat moss and zeolite on ammonia volatilization as a source of fine particulate matter (PM 2.5) from upland soil

  • Park, Seong Min;Hong, Chang Oh
    • 농업과학연구
    • /
    • 제46권4호
    • /
    • pp.907-914
    • /
    • 2019
  • Ammonia (NH3) that reacts with nitric or sulfuric acid in the air is the major culprit contributing to the formation of fine particulate matter (PM2.5). NH3 volatilization mainly originates from nitrogen fertilizer and livestock manure applied to arable soil. Cation exchange capacity (CEC) of peat moss (PM) and zeolite (ZL) is high enough to adsorb ammonium (NH4+) in soil. Therefore, they might inhibit volatilization of NH3. The objective of this study was to compare the effect of PM and ZL on NH3 volatilization from upland soil. For this, a laboratory experiment was carried out, and NH3 volatilization from the soil was monitored for 12 days. PM and ZL were added at the rate of 0, 1, 2, and 4% (wt wt-1) with 354 N g m-2 of urea. Cumulative NH3-N volatilization decreased with increasing addition rate of both materials. Mean value of cumulative NH3-N volatilization across application rate with PM was lower than that with ZL. CEC increased with increasing addition rate of both materials. While the soil pH increased with ZL, it decreased with PM. Increase in CEC resulted in NH4+ adsorption on the negative charge of the external surface of both materials. In addition, decrease in soil pH hinders the conversion of NH4+ to NH3. Based on the above results, the addition of PM or ZL could be an optimum management to reduce NH3 volatilization from the soil. However, PM was more effective in decreasing NH3 volatilization than ZL due to the combined effect of CEC and pH.

모듈형 식물장식을 활용한 실내공간 장식방법에 대한 연구 (A Study on the Methods of the Decorations Using Module Plants in Interior Spaces)

  • 이종란
    • 한국실내디자인학회논문집
    • /
    • 제24권5호
    • /
    • pp.62-69
    • /
    • 2015
  • The purpose of this research is to analyze the methods of the decorations using module plants in interior spaces. This research produced 18 types of the module plant decoration: considering the classifications of module plants(soil, hydroculture, moss), directions of module plants (up, side, down), assembling ways of module plants (horizontal, vertical). Applying these 18 types to the interior space decoration (floor stand, wall attach, ceiling hanging), 54 types were classified. After that, 150 cases of the decoration using module plants in interior spaces were collected and analyzed. In result, the cases were belong to 25 types of 54 types. The important types were the types to be able to decorate wide area of walls or ceilings without occupying floor area: SOIL-UP-VERTICAL, HYDROCULTURE-UP-VERTICAL, MOSS-SIDE-VERTICAL. These types were the decorations with function of bio-filter for air cleaning. Special types were SOIL-SIDE-HORIZONTAL, SOIL-SIDE-VERTICAL with soil developed not to pour and SOIL-DOWN-HORIZONTAL, SOIL-DOWN-VERTICAL with lucks not to pour soil. Plants will be used widely in interior design because of the awareness of eco-friendly design. The strength that module plants are portable, changable, able to exchange parts helps users to maintain plants in interior spaces. For designers, module plants are flexible materials in order to make variety of forms to adjust to interior spaces. The results of this research about methods of the decorations using module plants in interior spaces are useful to designers who want to design interior spaces eco-friendly and user-friendly.

유기중합물이 토양의 입단화와 페레니얼 라이그래스의 성장에 미치는 영향 (Evaluating the Influence of Liquid Organic Polymer on Soil Aggregation and Growth of Perennial Ryegrass)

  • 이상국;데이브 미너
    • 아시안잔디학회지
    • /
    • 제25권1호
    • /
    • pp.69-72
    • /
    • 2011
  • 토양입단화는 토양의 물리적 화학적 그리고 생물학적인 변화를 일으키는 활발한 과정이다. 토양입단화를 통해서 생성된 토양공극은 토양에서 공기와 물의 순환을 증가시키는 역할을 하게 된다. 유기중합물이 토양입단 안정화에 대한 긍정적인 역할은 많은 연구결과에서 보고가 된 바 있다. 본 실험의 목적은 유기중합물이 토양입단화와 페레니얼 라이그래스의 성장에 미치는 영향에 대해서 알아보기 위해서 수행되었다. 유기중합물의 세가지 농도가 적용이 되었으며 실험을 위해 두가지 토양이 사용이 되었다. 첫번째 토양으로 4.0%의 유기물이 함유된 양토가 건조된 후 사용이 되었으며 두번째 토양으로 점토가 사용이 되었다. 유기중합물 처리에 따른 페레니얼 라이그래스의 색, 품질, 성장에 미치는 영향은 나타나지 않았다. 그러나 유기중합물이 토양입단화에는 토양의 종류에 따라 영향이 있는 것으로 나타났다. 본 실험의 결과의 구체적인 실증을 위해서 필드 실험이 필요한 것으로 판단이 된다.

소성 점토다공체 및 코코넛 피트를 혼합한 인공토양의 물리화학적 특성과 식물생육에 미치는 영향 (Physicochemical Properties of Artificial Soil Formulated by Blending Calcined Clay and Coconut Peat and its Effect on Plant Growth)

  • 허근영;강호철;김인혜;심경구
    • 한국조경학회지
    • /
    • 제30권5호
    • /
    • pp.107-115
    • /
    • 2002
  • This study was carried out to compare artificial soil formulated by blending calcined clay and coconut peat with perlite, then to evaluate this soil as a perlite substitute for use as an artificial planting medium. To achieve this, a determination of the physico-chemical properties and it's effect on plant growth were conducted by comparing those with large perlite grains and small grains. The results are summarized as follows: 1) The bulk density was 0.41g/㎤. This density was lower than that of field soil, but higher than that of large perlite grain(0.23g/㎤) and small grain(0.25g/㎤). The porosity, field capacity, and saturated hydraulic conductivity were 71.3%, 49.2%, and 3.8$\times$10-2cm/s, respectively. The air-permeability, water holding capacity, and drainage were better than or equal to that both large and small perlite grain. 2) It was near-neutral in reaction(pH=6.6). It had a high organic carbon content(65.8g/kg) and a low available phosphoric acid content(84.7mg/kg). It was similar to crop soil in cation exchange capacity(11.4cmol/kg). It had a low exchangeable calcium content(0.71cmol/kg), a low exchangeable magnesium content(0.68cmol/kg), a high exchangeable potassium content(2.54cmol/kg), and a high exchangeable sodium content(1.12cmol/kg). Except for the exchangeable potassium and sodium content, the chemical properties were better than or equal to both large and small grain perlite. The excessive exchangeable potassium or sodium content will inhibit plant growth. 3) In Experiment 1, the plant growth tended to be higher compared to that of large and small perlite gains. But in Experiment 2, it tended to be lower. This might be linked to the excessive exchangeable potassium or sodium content. 4) It could be considered as a renewable perlite substitute for greening of artificial soil. But, it would be necessary to leach the excessive exchangeable potassium or sodium to avoid the risk of inhibiting plant growth.

Visible injury and growth inhibition of black pine in relation to oxidative stress in industrial areas

  • Han, Sim-Hee;Kim, Du-Hyun;Ku, Ja-Jung;Byun, Jae-Kyung;Lee, Jae-Cheon
    • Journal of Ecology and Environment
    • /
    • 제33권4호
    • /
    • pp.333-341
    • /
    • 2010
  • The objective of our study was to investigate the major reasons for the different growth and visible injury on the needles of black pine growing in Ulsan and Yeocheon industrial complex areas, South Korea. After 12 years of growth, we collected climatic and air pollutant data, and analyzed soil properties and the physiological characteristics of black pine needles. Annual and minimum temperatures in Ulsan were higher than those in Yeocheon from 1996 to 2008. Ozone ($O_3$) was the pollutant in greatest concentration in Yeocheon, and whereas the $SO_2$ concentration in most areas decreased gradually during the whole period of growth, $SO_2$ concentration in Yeocheon has increased continuously since 1999, where it was the highest out of four areas since 2005. Total nitrogen and cation exchange capacity in Yeocheon soil were significantly lower than those of Ulsan. The average growth of black pine in Yeocheon was significantly smaller than that in Ulsan, and the growth of damaged trees represented a significant difference between the two sites. Photosynthetic pigment and malondialdehyde content and antioxidative enzyme activity in the current needles of black pine in Yeocheon were not significantly different between damaged and healthy trees, but in 1-year-old needles, there were significant differences between damaged and healthy trees. In conclusion, needle damage in Yeocheon black pine can be considered the result of long-term exposure to oxidative stress by such as $O_3$ or $SO_2$, rather than a difference in climatic condition or soil properties, and the additional expense of photosynthate needed to overcome damage or alleviate oxidative stress may cause growth retardation.

난방 온실의 지중열 교환 특성에 관한 실험적 연구 (Experimental Study on the Characteristics of Ground Heat Exchange in Heating Greenhouses)

  • 신현호;남상운
    • 생물환경조절학회지
    • /
    • 제25권3호
    • /
    • pp.218-223
    • /
    • 2016
  • 온실의 난방부하 중 지중전열부하는 산정방법이나 적용여부가 제각각이고, 온실의 규모에 따라 각각의 방법에는 큰 차이가 있으므로 보다 정확히 국내에 적용할 수 있는 방법을 정립할 필요가 있다. 본 연구에서는 원예시설의 난방부하 산정방법 정립에 필요한 기초자료를 제공하기 위하여 위치와 규모가 다른 3개의 연동 플라스틱 온실에서 난방기간 동안 지온분포와 토양열류를 실측하였으며, 온실의 지중전열부하 산정방법을 검토하고 난방설계에 필요한 기준자료를 도출하였다. 난방중인 온실의 지온분포를 실측하여 실내기온과 비교한 결과 온실의 중앙 부분에서는 지온이 실내기온 보다 높고, 온실의 끝부분과 모서리 부분에서는 지온이 실내기온 보다 낮은 것으로 나타났다. 그러므로 온실의 중앙 부분에서는 지중열이 공급되고, 온실의 측면 부분에서는 외주부를 통해서 열손실이 발생하며, 온실의 규모에 따라 차이가 있는 것으로 판단된다. 건물의 외주부를 통한 열손실 개념을 도입하고, 온실의 규모를 반영하여 수정한 온실의 지중전열부하 산정방법은 타당성이 있는 것으로 평가된다. 토양열류센서를 이용하여 실측한 지중전열량은 실내외 기온차에 비례하여 직선적으로 증가하는 것을 확인할 수 있었다. 지중전열량 분석 결과로부터 지중전열의 방향이 바뀌는 기준온도차를 도출하였으며, 국내 온실의 난방설계에서 대규모 온실은 $10^{\circ}C$ 내외, 소규모 온실은 $12.5{\sim}15^{\circ}C$를 적용할 것을 제안하였다. 또한 지중열류 실측 결과로부터 온실의 외주부 단위길이당 열손실계수를 도출하였으며, 대규모 온실은 $7.5{\sim}10W{\cdot}m^{-1}{\cdot}K^{-1}$, 소규모 온실은 $2.5{\sim}5.0W{\cdot}m^{-1}{\cdot}K^{-1}$를 설계기준 자료로 제안하였다.