• Title/Summary/Keyword: soil-aggregate

Search Result 219, Processing Time 0.024 seconds

A Study on the Shear Strength Characteristics of Composited Ground applying RAP Method by Large Direct Shear Test (대형직접전단시험에 의한 RAP 복합지반의 전단강도 특성 연구)

  • Chun, Byung-Sik;Seo, Deok-Dong;Kim, Jong-San
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.82-89
    • /
    • 2004
  • To secure stability and availability of Rammed Aggregate Pier method as the foundation of a structure, the shear strength characteristics according to the area replacement ratio of RAP and the relative density of in-situ ground was studied through soil laboratory tests and large direct shear tests in a model ground. As a result, the internal friction angle tends to increase in proportion to in-situ relative density(Very Loose, Loose, Medium) in composite ground formed by the same area replacement ratio of RAP and also increase in proportion to increasing the area replacement ratio(30, 40, 50%) of RAP in the same ground condition. Furthermore, the comparative analysis between the experimental value and theoretical value of the shear strength is carried out.

  • PDF

Mechanical Properties and Durability of Abrasion of EVA Concrete Reinforced Steel Fiber (강섬유 보강 EVA 콘크리트의 역학적 특성 및 내마모성)

  • Sung, Chan Yong;Nam, Ki Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.45-54
    • /
    • 2014
  • This study was performed to evaluate compressive strength, flexural strength, static modulus of elasticity, stress-strain ratio and durability of abrasion on EVA concrete reinforced steel fiber (SF) in order to use hydraulic structures, underground utilities, offshore structures and structures being applied soil contaminated area. It is used ordinary portland cement, crushed coarse aggregate, nature fine aggregate, EVA redispersible polymer powder, superplasticizer and deforming agent to find optimum mix design of EVA concrete reinforced steel fiber. EVA concrete reinforced SF was effected on the improvement of mechanical properties and durability of abrasion.

Reducing Soil Loss of Sloped Land using Lime-Organic Compost mixtures under Rainfall Simulation (인공강우 모사를 통한 석회/유기퇴비 혼합물의 경사지 토양유실 억제효과)

  • Koh, Il-Ha;Roh, Hoon;Hwang, Wonjae;Seo, Hyunggi;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.3
    • /
    • pp.43-50
    • /
    • 2018
  • In a previous study, the feasibility of four materials (bentonite, steelmaking slag, lime and organic compost) to induce soil aggregate formation was assessed and the mixtures of organic compost and lime were chosen as most effective amendments in terms of cost benefit. This work is a subsequent study to evaluate the effectiveness of those amendments in reducing soil loss in $15^{\circ}$ sloped agricultural area by using rainfall simulation test. Three different soils were treated with two conditions of organic compost/lime mixtures (2% + 2%, 3% + 1%, w/w). In the amended soils, soil fertility was increased due to the increase of CEC, T-N, and T-P. During the rainfall simulation, suspended solid in run-off water from amended soil were reduced by 43% ~ 78%. When the content of organic compost was higher than that of lime, reduction of soil loss was also increased by 67% ~ 78%. Sediment discharge was also decreased by 72% ~ 96% in the amended soil. Similar to the suspended solid analysis, higher organic compost content led to more reduction of soil discharging, which implies organic compost is more effective than lime in reducing soil loss. The overall result suggests that the mixtures of organic compost and lime could be used as amendment materials to reduce soil loss in sloped farmland.

Effect of Crop Yield and Soil Physical Properties to Application of Organic Resources in Upland (밭 토양에서 유기물 자원의 시용이 작물 수량 및 토양 물리성에 미치는 영향)

  • Han, Kyunghwa;Jung, Kangho;Cho, Heerae;Lee, Hyubsung;Ok, Junghun;Zhang, Yongseon;Kim, Gisun;Seo, Youngho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.4
    • /
    • pp.15-22
    • /
    • 2017
  • Application of organic resources to agricultural land can increase crop yield by improving soil characteristics. The objective of this study was to evaluate effect of crop yield and soil physical properties including aggregate stability to application of organic resources in upland. The soybean was cultivated in a sandy loam field and a clay loam field located at Suwon and a sandy loam field located at Pyeongchang. The organic resources used in this study were rice straw compost (RSC), composted pig manure with sawdust (CPIG), composted poultry manure with sawdust (CPM), and cocopeat applied before sowing crop. Application rate of organic resources was determined based on carbon content and water content. The inorganic fertilizers were applied based on soil testing. In addition, the decomposition of RSC, CPIG, and cocopeat was characterized by isothermal incubation with sandy loam soil. The decomposition rate was highest for RSC followed by CPIG and cocopeat. Organic resource application increased yield of soybean, which effect was greater in clay loam than in sandy loam. In addition, increase in gas phase proportion by organic resource application was distinct in clay loam soil compared with sandy loam soil. In terms of aggregate stability, increasing effect was more obvious in sandy loam soils than in a clay loam soil. The highest yield was observed in RSC treatment plots for all the fields. Improvement of soybean yield and soil physical characteristics by cocopeat was not as much as that of the other organic resources. The results implied that RSC could be recommended for promoting aggregate stability and crop yield in upland cultivation.

Effect of Soil Grinding on Total Concentrations of As and Pb in Soil Determined by aqua regia Method (토양시료의 분쇄가 왕수분해법을 이용한 비소와 납의 전함량 분석 결과에 미치는 영향)

  • An, Jinsung;Yu, Gihyeon;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.1
    • /
    • pp.25-29
    • /
    • 2018
  • The effect of soil grinding on total As and Pb concentrations determined by aqua regia method was examined. Among six field-collected, air-dried soil samples tested, soils A, B, C, and E were directly sieved through a $150-{\mu}m$ sieve without grinding and showed 2.18 to 3.03 times higher total As concentrations and 2.62 to 3.45 times higher total Pb concentrations than those of the soil samples prepared to allow all soil particles to pass through the $150-{\mu}m$ sieve by grinding. The reason can be ascribed to the fact that those soils contain fine particles (i.e., < $150{\mu}m$ in diameter) only 4.6 to 6.8% of the total soil weights. On the other hand, for D and F soils, fine particles smaller than $150{\mu}m$ accounted for 57 and 46%, respectively, so that the effect of grinding on As and Pb concentrations were relatively low (As: 1.15 and 1.23 times, Pb: 1.36 and 1.49 times, respectively). The result demonstrates that grinding prior to $150-{\mu}m$ sieving is necessary to ensure the homogeneity of soil samples and hence to obtain more accurate heavy metal concentrations in soils. This is especially true for soil samples with less fine soil particles and/or microaggregates (i.e., below $150{\mu}m$).

Utilizability of Waste Concrete Powder as a Material for Soil Pavement (흙도로포장용 재료로서 폐콘크리트 미분말의 활용성 연구)

  • Kim, Yong-Jic;Choi, Yun-Wang;Kim, Young-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.277-282
    • /
    • 2015
  • This study is conducted to utilize waste concrete powder (WCP) made as a by-product manufacturing high quality recycled aggregate. The blaine fineness of the used waste concrete powder was $928cm^2/g$. As the main characteristic of waste concrete powder, it showed an angular type similar to cement, but hydrated products were attached on the surface of particles. In addition, the size of the particles of waste concrete powder was larger than OPC and in terms of chemical components it had higher $SiO_2$ contents. For using WCP in soil cement-based pavement, the qualities, physical and chemical properties, of WCP should be researched. In the first step, the specified compressive strength of mortar for two types of clay sand soil and clay soil respectively was experimented to be 15 MPa and then optimum mixing ratio of chemical solidification agent were decided in the range of 1.5 - 3.0% in the replacement with cement weight content. In the second step, based on the prior experimental results, recycling possibility of WCP in soil cement-based pavement was studied. In the result of experiment the mixing ratio of WCP were 5, 10, 15 and 20% in the replacement with soil weight and the compressive strength of mortar was somewhat decreased according to the increase of the mixing ratio of WCP.

Efficacy of Starch and PVA (polyvinyl alcohol) for the Suppression of Soil Dust Emissions from Large-scale Construction Sites in Urban Areas (도심 대형사업장의 토양 입자 비산 억제를 위한 Starch와 PVA(polyvinyl alcohol)의 효율성 평가)

  • Choi, Jong-Soo;Kim, Dong-Su;Choi, Yu-Lim;Kim, Jung-Eun;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.6
    • /
    • pp.9-15
    • /
    • 2019
  • Soil dust emitted from large scale construction sites in urban areas has posed a significant health threats to local residents by exacerbating air quality. Water-spraying (moistening) is commonly practiced to lower the dust emission in construction sites, but its long term effectiveness is highly questionable. In this study, the utility of starch and PVA(polyvinyl alcohol) was investigated in suppression of the soil dust emissions in construction sites in Seoul areas. The efficiency of the two suppressants was tested with test soil sample in a lab-scale wind tunnel box under different concentrations of suppressants and soil textures. Starch and PVA showed the superior ability to suppress soil dust emission as compared to moistening, resulting in PM10 and PM2.5 lower than the daily limit values of 30 and 15 ㎍/㎥ respectively. PVA showed higher suppression capability than starch for all conditions. The test soils mixed with suppressants also showed dramatically enhanced aggregate stability compared to the non-treated soil.

Effects of Gypsum and Fresh Cattle Manure on Physico-chemical Properties of Soil and Yield of Forage Crop in Hwaong Reclaimed Land

  • Jang, Jae-Eun;Kang, Chang-Sung;Park, Jung-Soo;Shim, Jae-Man;Kim, Hee-Dong;Kim, Sun-Jae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.1
    • /
    • pp.31-39
    • /
    • 2017
  • The effects of application of gypsum and fresh cattle manure on the yield of forage crop were investigated in Hwaong reclaimed land in Korea for 3 years from 2011 to 2013. This study was conducted to develop the practical application method of livestock manure as a fertilization source and a soil physico-chemical ameliorator for the cultivation of forage crop $Sorghum{\times}Sudangrass$ hybrid in newly reclaimed tidal land soil. Treatments with six applications were established with three replications; chemical fertilizer (CF), gypsum (G) $20Mg\;ha^{-1}$, G+fresh cattle manure (FCM) 100%, G+FCM 200%, G+FCM 300% and FCM 100% which referred to the application rate equivalent to the recommended amount of phosphate fertilization by soil test. The combined treatments of G+FCM increased soil organic matter, $Av.P_2O_5$ and exchangeable $Ca^{2+}$ contents while decreased exchangeable $Na^+$ and $Mg^{2+}$. The soil bulk density, soil hardness and soil aggregate formation were improved by G+FCM treatments. The dry matter yields of $Sorghum{\times}Sudangrass$ hybrid were significantly increased in proportion to the application rate of FCM. The phosphorus use efficiency showed the highest in the application level of G+FCM 100%, which seemed to be the results of reduced nutrient use efficiency by nutrient immobilization, leaching etc. when applied excessive amount of fresh animal manure.

Tracing the Distribution of Deicer around Highway Areas using Sodium Adsorption Ratio (SAR) of Soil (고속도로 주변 토양의 나트륨흡착비(SAR)를 이용한 제설제 분포 추적)

  • Cho, Sunghyen;Lee, Dongguen;Shin, Gunhwan;Choi, Cheonil;Lee, Goontaek;Kim, Dosoon;Lee, Byeongduk
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.3
    • /
    • pp.22-40
    • /
    • 2022
  • The goal of this study was to estimate the possible scattering distance of deicer from the highway and the impact range of deicer on soil quality in terms of plant growth. Among the major elements (Ca2+, Cl- and Na+) of deicer, Ca2+and Cl- are usually applied as fertilizer to soil. Therefore both elements (Ca2+and Cl-) were not appropriate for a tracer of deicer at the agricultural area. In this study, SAR (sodium adsorption ratio) of soil was proposed as an alternative tracer to confirm the distribution of the deicer around the highway areas. Because deicer is the main anthropogenic source of Na+ around the highway areas and does harm to the physical properties of soil and plant growth through the destruction of soil aggregate, SAR would be an recommendable tracer to access the distribution of deicer as well as adverse effect on soil quality at highway areas. The influence range of deicer based on SAR of soil was estimated to be less than 20 m distance from the highway even though the possible flying distance of deicer was found to be more than 100 m from the highway. However the deicer seriously deposited within 10 m from the highway.

Estimation of Resistance Bias Factors for the Ultimate Limit State of Aggregate Pier Reinforced Soil (쇄석다짐말뚝으로 개량된 지반의 극한한계상태에 대한 저항편향계수 산정)

  • Bong, Tae-Ho;Kim, Byoung-Il;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.6
    • /
    • pp.17-26
    • /
    • 2019
  • In this study, the statistical characteristics of the resistance bias factors were analyzed using a high-quality field load test database, and the total resistance bias factors were estimated considering the soil uncertainty and construction errors for the application of the limit state design of aggregate pier foundation. The MLR model by Bong and Kim (2017), which has a higher prediction performance than the previous models was used for estimating the resistance bias factors, and its suitability was evaluated. The chi-square goodness of fit test was performed to estimate the probability distribution of the resistance bias factors, and the normal distribution was found to be most suitable. The total variability in the nominal resistance was estimated including the uncertainty of undrained shear strength and construction errors that can occur during the aggregate pier construction. Finally, the probability distribution of the total resistance bias factors is shown to follow a log-normal distribution. The parameters of the probability distribution according to the coefficient of variation of total resistance bias factors were estimated by Monte Carlo simulation, and their regression equations were proposed for simple application.