• 제목/요약/키워드: soil water movement

검색결과 217건 처리시간 0.026초

답전윤환 인삼재배 예정지 토양의 물 이동특성 평가 (Assessment on Water Movement in Paddy-Upland Rotation Soil Scheduled for Ginseng Cultivation)

  • 허승오;이윤정;연병열;전상호;하상건;김정규
    • 한국약용작물학회지
    • /
    • 제17권3호
    • /
    • pp.204-209
    • /
    • 2009
  • This study was conducted to assess water movement in paddy-upland rotation soil scheduled for ginseng cultivation through the measurement of infiltration and permeability of soil water. Soil sample was divided with four soil layers. The first soil layer (to 30cm from top soil) was loamy sand, the second and the third soil layers (30$\sim$70 ㎝) were sand, and the fourth (< 120 ㎝) was sandy loam. The soil below 130 ㎝ of fourth soil layer was submerged under water. The shear strength, which represents the resisting power of soil against external force, was 3.1 kPa in the first soil layer. This corresponded to 1/8 of those of another soil layer and this value could result in soil erosion by small amount of rainfall. The rates of infiltration and permeability depending on soil layers were 39.86 cm $hr^{-1}$ in top soil, 2.34 cm $hr^{-1}$ in 30$\sim$70 ㎝ soil layer, 5.23 cm $hr^{-1}$ and 0.18 cm $hr^{-1}$ in 70$\sim$120 ㎝ soil layer, with drain tile, and without drain tile, respectively. We consider that ground water pooled in paddy soil and artificial formation of soil layer could interrupt water canal within soil and affect negatively on water movement. Therefore, we suggest that to drain at 5 m intervals be preferable when it makes soil dressing or soil accumulation to cultivate ginseng in paddy-upland rotation soil to reduce failure risk of ginseng cultivation.

다층토양에서의 물과 공기의 움직임 (Water and Air Movement in Bounded Layered Soil)

  • 선우중호
    • 물과 미래
    • /
    • 제8권2호
    • /
    • pp.56-60
    • /
    • 1975
  • Traditional descriptions of water movement in soils and of calculations of infiltration rates neglect the air movement and its compressibility. The movement of two fluids in the bounded layered porous medium is treated analytically and computer simulations are conducted for given boundary conditions and initial saturation profiles. The movement of a given saturation across the interface between the different soil layers is theoretically developed by considering the conservation of mass. It is shown that the existence of the interface affects the infiltration rate when the average total velocity is greater than zero. The transition from one layer to another layer cause a change in the capillary drive and consequently influences the infiltration rate.

  • PDF

Effect of Temperature and Plow Pan on Water Movement in Monolithic Weighable Lysimeter with Paddy Sandy Loam Soil during Winter Season

  • Seo, Mijin;Han, Kyunghwa;Jung, Kangho;Cho, Heerae;Zhang, Yongseon;Choi, Seyeong
    • 한국토양비료학회지
    • /
    • 제49권4호
    • /
    • pp.300-309
    • /
    • 2016
  • The monolithic weighing lysimeter is a useful facility that could directly measure water movement via layers, drainage, and evapotranspiration (ET) with precise sensors. We evaluated water movement through layers and water balance using the lysimeter with undisturbed paddy sandy loam soil, Gangseo soil series (mesic family of Anthraquic Eutrudepts classified by Soil Taxonomy) during winter season from Dec. 2014 to Feb. 2015. Daily ET indicated up to 1.5 mm in December and January and 2 mm in February. The abrupt increase of soil water tension at the depth of 0.1 m, when soil temperature at the same depth was below $2^{\circ}C$, was observed due to temporary frost heaving. The surface evaporation was less than reference ET below -15 kPa of soil water potential at the depth of 0.1 m. The maximum drainage rate was similar to the saturated hydraulic conductivity of a plow pan layer. Both upward and downward water movement, related to ET and drainage, were retarded by a plow pan layer. This study demonstrated that the lysimeter study could well quantify water balance components even under frost heaving during winter season and that a plow pan with low permeability could act as a boundary that affects drainage and evapotranspiration.

Effects of Compost and Gypsum on Soil Water Movement and Retention of a Reclaimed Tidal Land

  • Lee, Jeong-Eun;Yun, Seok-In
    • 한국토양비료학회지
    • /
    • 제47권5호
    • /
    • pp.340-344
    • /
    • 2014
  • Compost and gypsum can be used to ameliorate soil physicochemical properties in reclaimed tidal lands as an organic and inorganic amendment, respectively. To evaluate effects of compost and gypsum on soil water movement and retention as a soil physical property, we measured the soil's saturated hydraulic conductivity and field capacity after treating the soil collected in a reclaimed tidal land with compost and gypsum. Saturated hydraulic conductivity of soil increased when compost was applied at the conventional application rate of $30Mg\;ha^{-1}$. However, the further application of compost insignificantly (P > 0.05) increased saturated hydraulic conductivity. On the other hand, additional gypsum application significantly increased soil saturated hydraulic conductivity while it decreased soil field capacity, implying the possible effect of gypsum on flocculating soil colloidal particles. The results in this study suggested that compost and gypsum can be used to improve hydrological properties of reclaimed tidal lands through increasing soil water retention and movement, respectively.

HYDRUS를 이용한 작물재배용 암면배지에서의 수분 이동 시뮬레이션 (Simulation of Water Movement in Rockwool Slab as Soil-less Cultivation Using HYDRUS)

  • 김동현;김종순;권순홍;박종민;최원식
    • 한국산업융합학회 논문집
    • /
    • 제26권1호
    • /
    • pp.153-162
    • /
    • 2023
  • It is important to determine water movement at the growing substrate used in soil-less cultivation for better management of water supply. Numerical simulation is a fast and versatile approach to evaluate highly accurate water distribution. The objective of this study is to simulate the water movement in rockwool as a soil-less medium using HYDRUS-2D. HYDRUS-2D was used to simulate the spatial and temporal water movement in two types of rockwool slabs (Floriculture (FL), high density; Expert (EP), low density). The simulation was performed at two pulse conditions: 10 min ON and 50 min OFF (case A), 20 min ON and 40 min OFF (case B). The total irrigation amounts were the same at both cases. In case A, during the irrigation ON, the water contents at FL increased 1.93-fold faster than the values at EP. Whereas, during the irrigation OFF, the decreasing rate of water contents at FL was almost the same as one at EP. At case B, these values were not changed much from case A. However, the duration of optimum water content (50% - 80%) was 15.0 min and 23.5 min at case A and case B, respectively. Thus, FL and 20 min ON and 40 min OFF (case B) could supply water to rockwool much faster and longer than EP. Once qualitatively validated, this simulation of water movement in rockwool could be used to design an effective optimum irrigation method for vegetables.

매립지반 지하공동구의 수평이동원인에 대한 수치해석적 분석 (Numerical Analysis of Utility Tunnel Movement under Reclamation Ground)

  • 윤우현;황철성
    • 한국안전학회지
    • /
    • 제28권5호
    • /
    • pp.35-40
    • /
    • 2013
  • Recently reclamation land is largely developed to utilize the land according to economic growth. The soil of landfill is soft, low shear strength, which makes it difficult to use the equipment. A large movement is occurred on the utility tunnel under construction. The inclined land with high water level and underground facilities are widely distributed and the excess pore water pressure may occur under construction similarly to this study. Some different conditions are made to design result, such as 4m of soil piling near the construction area, heavy rainfall during 2nd excavation that may cause flow liquefaction. To analyze the cause of transverse lateral movement, Three dimensional analysis are performed to four load cases, which is original design condition, flow liquefaction by heavy rainfall, unsymmetric lateral soil pressure, and both of them simultaneously. Ten steps of full construction stage, 1st excavation for utility tunnel, construction of utility tunnel, 1st refill, piling soil from 1m to 4 m, 2nd excavation for drainage culvert, liquefaction around the utility tunnel, construction of drainage culvert and 2nd refill, are take into account to investigate the cause of movement.

교대말뚝기초의 측방유동에 관한 원심모형실험 (Centrifuge Model Experiments for Lateral Soil Movements of Piled Bridge Abutments.)

  • 최동혁;정길수;박병수;유남재
    • 산업기술연구
    • /
    • 제25권B호
    • /
    • pp.63-71
    • /
    • 2005
  • This paper is an experimental result of investigating lateral soil movements at piled bridge abutments by using the centrifuge model facility. Three different centrifuge model experiments, changing the methods of ground improvement at bridge abutment on the soft clayey soil (no improvement, preconsolidation and plastic board drains (PBD), sand compaction pile (SCP) + PBD), were carried out to figure out which method is the most appropriate for resisting against the lateral soil movements. In the centrifuge modelling, construction process in field was reconstructed as close as possible. Displacements of abutment model, ground movement, vertical earth pressure, cone resistance after soil improvement and distribution of water content were monitored during and after centrifuge model tests. As results of centrifuge model experiments, preconsolidation method with PBD was found to be the most effective against the lateral soil movement by analyzing results about displacements of abutment model, ground movement and cone resistance. Increase of shear strength by preconsolidation method resulted in increasing the resistance against lateral soil movement effectively although SCP could mobilize the resistance against lateral soil movement. It was also found that installment with PBD beneath the backfill of bridge abutment induced effective drainage of excess pore water pressure during the consolidation by embanking at the back of the abutment and resulted in increasing the shear strength of clay soil foundation and eventually increasing the resistance of lateral soil movement against piles of bridge abutment.

  • PDF

옥수수포장의 토양 수분함량에 대한 토성과 경운의 영향 (Effects of Soil Types and Tillage Systems on Soil Water Movement in the Root Zone of Cornfields)

  • 김원일;정구복;고문환;;박노동
    • 한국토양비료학회지
    • /
    • 제35권4호
    • /
    • pp.197-206
    • /
    • 2002
  • 토양수분 이동에 대한 토양 특성과 경운의 영향을 구명하기 위하여 3년 동안 일리노이 중부지방의 몇 개 토양통이 다른 옥수수 포장에서 토양 수분함량을 조사하였다. 경작 기간중의 무경운과 경운된 포장에서 30 cm 간격으로 깊이 150 cm 까지 Neutron Scattering 기술에 의하여 수분함량을 측정하였다. 토양 경작층에서의 수분함량은 경운이나 강우에 의해 수분함량의 영향을 받은 반면 심토에서는 토성에 의해 영향을 받았다. 토양수분은 점토 함량이 상대적으로 낮은 Saybrook통이나 Catlin통에서 점토 함량이 높아 수분 보유능이 높은 Drummer통, Flanagan통, 및 Ipava통보다 빠르게 이동하였다. 이들 Drummer통, Flanagan통, Ipava통의 높은 유기물 함량은 수분 보유능을 증가시키는 또 다른 이유가 될 수 있다. 또한 옥수수 경작층에서의 수분함량은 경운 포장에서 무경운 포장보다 높았다.

토양수분 수지계산에 의한 옥수수 포장에서의 토양수분 이동 예측 (Predicting Water Movement in the Soil Profile of Corn Fields with a Computer-Based STELLA Program to Simulate Soil Water Balance)

  • 김원일;정구복;이종식;김진호;신중두;김건엽
    • 한국토양비료학회지
    • /
    • 제38권4호
    • /
    • pp.222-229
    • /
    • 2005
  • 단순1차원 STELLA 모델이 토양수분 수지계산에 의해 일리노이 옥수수 포장의 질소용탈을 예측하기 위하여 개발되었다. 이는 옥수수포장이라는 한정된 생태계 안에서의 물의 연간 유입량과 유출량을 산정하는데 물의 유입에는 강우량과 유출에는 유거, 증발산 및 배수량이 계산되었다. 모델에는 일일강우량과 증산량 등 2개의 기상자료가 이용되었고, 토양의 다양한 전환상수들이 토양의 물리화학성을 고려하여 일차식으로 계산되어 이용되었다. 모델의 결과는 토층에 따른 토양수분의 일일 변화량과 손실량이 산출된다. 모델에 의한 물 수지는 강우가 많았던 1993년은 늘어난 반면 강우가 적었던 1992년과 1994년에는 줄어들었다. 또한 유기물과 점토가 많은 토양에서 수분의 유출량이 적었다. 모델에 의한 토양 수분함량은 표준편차를 고려한 측정치와 토양통에 따라 22-78%, 토층에 따라 30-70%의 일치를 보였고, 이러한 불일치는 토양수분과 질소화합물의 확산 등 수평적 이동, 다른 형태의 질소 손실, 뿌리의 분포, 영농 형태 및 토양의 여러 특성들이 고려되지 않은 1차원 모델이기 때문이라 사료된다.

Technique for Soil Solution Sampling Using Porous Ceramic Cups

  • Chung, Jong-Bae
    • Applied Biological Chemistry
    • /
    • 제41권8호
    • /
    • pp.583-586
    • /
    • 1998
  • Porous ceramic cups are used for monitoring ion concentration in soil solutions in various time course and depth. A soil solution sampler was constructed in laboratory by inserting pliable perfluoroalkoxy(PFA) tubings into porous cup through holes in PVC rod segment which plugged top opening of the porous cup. The system was installed in drip irrigated soil in a vertical position, and nitrogen movement below the drip basin was monitored. To collect soil solution, vacuum in the cup was applied with a hand vacuum pump. The samples obtained were sufficient enough to run quantitative analyses for a number of chemicals. Nitrogen transformation and movement could be well defined, and the system seemed to be relevant to the other soil solution samplers in monitoring chemical movement in soil. Although this system has general deficiencies found in the other samplers using ceramic cup, it could be easily constructed at a low cost. Since the tubing was pliable, the cups could be installed in horizontal position, and this allows installations of the cups at more precise depth increments and also more precise samplings of soil solution at each depth.

  • PDF