• Title/Summary/Keyword: soil vibration

Search Result 344, Processing Time 0.026 seconds

Dynamic response and design of a skirted strip foundation subjected to vertical vibration

  • Alzabeebee, Saif
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.345-358
    • /
    • 2020
  • Numerous studies have repeatedly demonstrated the efficiency of using skirts to increase the bearing capacity and to reduce settlement of shallow foundations subjected to static loads. However, no efforts have been made to study the efficiency of using these skirts to reduce settlement produced by machine vibration, although machines are very sensitive to settlement and the foundations of these machines should be designed properly to ensure that the settlement produced due to machine vibration is very small. This research has been conducted to investigate the efficiency of using skirts as a technique to reduce the settlement of a strip foundation subjected to machine vibration. A two-dimensional finite element model has been developed, validated, and employed to achieve the aim of the study. The results of the analyses showed that the use of skirts reduces the settlement produced due to machine vibration. However, the percentage decrease of the settlement is remarkably influenced by the density of the soil and the frequency of vibration, where it rises as the frequency of vibration increases and declines as the soil density rises. It was also found that increasing skirt length increases the percentage decrease of the settlement. Importantly, the results obtained from the analyses have been utilized to derive new dynamic impedance values that implicitly consider the presence of skirts. Finally, novel design equations of dynamic impedance that implicitly account to the effect of the skirts have been derived and validated utilizing a new intelligent data driven method. These new equations can be used in future designs of skirted strip foundations subjected to machine vibration.

Performance study on the whole vibration process of a museum induced by metro

  • Yang, Weiguo;Wang, Meng;Shi, Jianquan;Ge, Jiaqi;Zhang, Nan;Ma, Botao
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.413-434
    • /
    • 2015
  • The vibrations caused by metro operation propagate through surrounding soil, further induce secondary vibrations of the nearby underground structures and adjacent buildings. In order to investigate the effects of vibrations caused by metro on use performance of buildings, vibration experiment of Chengdu museum was carried out firstly. Then, the coupling tunnel-soil-structure finite element model was established with software ANSYS detailedly, providing a useful tool for investigating the vibration performances of structures. Furthermore, the dynamic responses and vibration predictions of museum building were obtained respectively by the whole process time-domain analysis and frequency-domain analysis, which were compared with the vibration reference values of museum. Quantitative analyses of the museum building performance were carried out, and the possible tendency and changing laws of vibration level with floors were proposed. Finally, the related vibration isolation measures were compared and discussed. The tests and analysis results show that: The vertical vibration responses almost increased with the increasing of building floors, while weak floors existed for the curve of horizontal vibration; The vertical vibrations were larger than the horizontal vibrations, indicating the vibration performances of building caused by metro were characterized with vertical vibrations; The frequencies of the museum corresponding to the peak vibration levels were around 6~17Hz; The damping effect of structure with 33m-span cantilever on vertical vibration was obvious, however, the damping effect of structure with foundation vibration isolators was not obvious.

A Study on Rotary Weeding Blade Installation Angle for Reduction of Hand Vibration in Working Type Cultivator

  • Kwon, Tae Hyeong;Kim, Joonyong;Lee, Chungu;Kang, Tae Gyoung;Lee, Byeong-Mo;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • v.39 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • Purpose: Walking type cultivator used for weeding generated excessive handle vibration as well as bouncing motion depending on the weeding speed. This research was conducted to define a design factor of the rotary weeding blades for reducing soil reaction forces as well as hand vibration. Methods: The motion and forces acting on the rotary blades were reviewed to find out the most influencing parameter on hand vibration. The installation angle (IA) of the blade was selected and analyzed to determine the condition of no reaction force less. For removing the unnecessary upward soil reaction, the design factor theory of weeding blade was suggested based on geometrics and dynamics. For evaluation of design factor theory, the experiment in situ was performed base on ISO 5349:1. The vibration $a_{hv}$ and theoretical value $X_{MF}$ were compared with two groups that one was positive group ($X_{MF}$ > 0) and the other was negative group ($X_{MF}$ < 0). Results: $X_{MF}$ was derived from rotational velocity, forward velocity, disk diameter, weeding depth, blade's width and IA of blade. Two groups had significant difference (p < 0.05). In aspect of the group mean total exposure duration, positive group was 17.53% bigger than negative group. When disk radius 100, 150 and 200 mm, minimum IAs were $4{\sim}27^{\circ}$, $3{\sim}15^{\circ}$ and $2{\sim}10^{\circ}$, respectively. A spread sheet program which calculated XMF was developed by Excel 2013. Conclusions: According to this result, minimum IA of weeding blade for soil reaction reduction could be obtained. For reduction hand-arm vibration and power consumption, minimum IA is needed.

Free Vibration Analysis of Parabolic Strip Foundations (포물선형 띠기초의 자유진동 해석)

  • Lee, Tae-Eun;Lee, Jong-Kook;Kang, Hee-Jong;Lee, Byoung-Koo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.703-706
    • /
    • 2005
  • Since soil structure interactions are one of the most important subjects in the structural/foundation engineering, much study concerning the soil structure interactions had been carried out. One of typical structures related to the soil structure interactions is the strip foundation which is basically defined as the beam or strip rested on or supported by the soils. At the present time, lack of studies on dynamic problems related to the strip foundations is still found in the literature. From these viewpoint this paper aims to theoretically investigate dynamics of the parabolic strip foundations and also to present the practical engineering data for the design purpose. Differential equations governing the free, out o plane vibrations of such strip foundations are derived, in which effects of the rotatory and torsional inertias and also shear deformation are included although the warping of the cross-section is excluded. Governing differential equations subjected to the boundary conditions of free-free end constraints are numerically solved for obtaining the natural frequencies and mode shapes by using the numerical integration technique and the numerical method of nonlinear equation.

  • PDF

Free Vibration Analysis of Circular Strip Foundations (원호형 띠기초의 자유진동 해석)

  • Lee, Jong-Kook;Kang, Hee-Jong;Lee, Byoung-Koo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.898-901
    • /
    • 2004
  • Since soil-structure interactions are one of the most important subjects in the structural/foundation engineering, much study concerning the soil-structure interactions had been carried out. One of typical structures related to the soil-structure interactions is the strip foundation which is basically defined as the beam or strip rested on or supported by the soils. At the present time, lack of studies on dynamic problems related to the strip foundations is still found in the literature. From these viewpoint, this paper aims to theoretically investigate dynamics of the circular strip foundations and also to present the practical engineering data for the design purpose. Differential equations governing the free, out-of-plane vibrations of such strip foundations are derived, in which effects of the rotatory and torsional inertias and also shear deformation are included although the warping of the cross-section is excluded. Governing differential equations subjected to the boundary conditions of corresponding end constraints are numerically solved for obtaining the natural frequencies and mode shapes by using the numerical integration technique and the numerical method of non-linear equation.

  • PDF

Soil interaction effects on the performance of compliant liquid column damper for seismic vibration control of short period structures

  • Ghosh, Ratan Kumar;Ghosh, Aparna Dey
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.89-105
    • /
    • 2008
  • The paper presents a study on the effects of soil-structure-interaction (SSI) on the performance of the compliant liquid column damper (CLCD) for the seismic vibration control of short period structures. The frequency-domain formulation for the input-output relation of a flexible-base structure with CLCD has been derived. The superstructure has been modeled as a linear, single degreeof-freedom (SDOF) system. The foundation has been considered to be attached to the underlying soil medium through linear springs and viscous dashpots, the properties of which have been represented by complex valued impedance functions. By using a standard equivalent linearization technique, the nonlinear orifice damping of the CLCD has been replaced by equivalent linear viscous damping. A numerical stochastic study has been carried out to study the functioning of the CLCD for varying degrees of SSI. Comparison of the damper performance when it is tuned to the fixed-base structural frequency and when tuned to the flexible-base structural frequency has been made. The effects of SSI on the optimal value of the orifice damping coefficient of the damper has also been studied. A more convenient approach for designing the damper while considering SSI, by using an established model of a replacement oscillator for the structure-soil system has also been presented. Finally, a simulation study, using a recorded accelerogram, has been carried out on the CLCD performance for the flexible-base structure.

Analysis of Free Vibration Characteristics of Tapered Friction Piles in Non-homogeneous Soil Layers (불균질 지반에 설치된 테이퍼 마찰말뚝의 자유진동 특성 분석)

  • Lee, Joon Kyu;Ko, Junyoung;Lee, Kwangwoo;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.69-77
    • /
    • 2019
  • This paper presents a new analytical model for estimating the free vibration of tapered friction piles. The governing differential equation for the free vibration of statically axially-loaded piles embedded in non-homogeneous soil is derived. The equation is numerically integrated by the Runge-Kutta method, and then the eigenvalue of natural frequency is determined by the Regula-Falsi scheme. For a cylindrical non-tapered pile, the computed natural frequencies compare well with the available data from literature. Numerical examples are presented to investigate the effects of the tapering, the skin friction resistance, the end condition of the pile, the vertical compressive loading, and the soil non-homogeneity on the natural frequency and mode shape of tapered friction piles.

Seismic Responses of Multi-DOF Structures with Shallow Foundation Using Centrifuge Test (원심모형실험을 활용한 얕은 기초가 있는 다자유도 구조물의 지진응답)

  • Kim, Dong Kwan;Kim, Ho Soo;Kim, Jin Woo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.117-125
    • /
    • 2022
  • In this study, centrifuge model tests were performed to evaluate the seismic response of multi-DOF structures with shallow foundations. Also, elastic time history analysis on the fixed-base model was performed and compared with the experimental results. As a result of the centrifuge model test, earthquake amplification at the fundamental vibration frequency of the soil (= 2.44 Hz) affected the third vibration mode frequency (= 2.50 Hz) of the long-period structure and the first vibration mode (= 2.27 Hz) of the short-period structure. The shallow foundation lengthened the periods of the structures by 14-20% compared to the fixed base condition. The response spectrum of acceleration measured at the shallow foundation was smaller than that of free-field motion due to the foundation damping effect. The ultimate moment capacity of the soil-foundation system limited the dynamic responses of the multi-DOF structures. Therefore, the considerations on period lengthening, foundation damping, and ultimate moment capacity of the soil-foundation system might improve the seismic design of the multi-DOF building structures.

Seismic response analysis of buried oil and gas pipelines-soil coupled system under longitudinal multi-point excitation

  • Jianbo Dai;Zewen Zhao;Jing Ma;Zhaocheng Wang;Xiangxiang Ma
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.239-249
    • /
    • 2024
  • A new layered shear continuum model box was developed to address the dynamic response issues of buried oil and gas pipelines under multi-point excitation. Vibration table tests were conducted to investigate the seismic response of buried pipelines and the surrounding soil under longitudinal multi-point excitation. A nonlinear model of the pipeline-soil interaction was established using ABAQUS finite element software for simulation and analysis. The seismic response characteristics of the pipeline and soil under longitudinal multi-point excitation were clarified through vibration table tests and simulation. The results showed good consistency between the simulation and tests. The acceleration of the soil and pipeline exhibited amplification effects at loading levels of 0.1 g and 0.2 g, which significantly reduced at loading levels of 0.4 g and 0.62 g. The peak acceleration increased with increasing loading levels, and the peak frequency was in the low-frequency range of 0 Hz to 10 Hz. The amplitude in the frequency range of 10 Hz to 50 Hz showed a significant decreasing trend. The displacement peak curve of the soil increased with the loading level, and the nonlinearity of the soil resulted in a slower growth rate of displacement. The strain curve of the pipeline exhibited a parabolic shape, with the strain in the middle of the pipeline about 3 to 3.5 times larger than that on both sides. This study provides an effective theoretical basis and test basis for improving the seismic resistance of buried oil and gas pipelines.

Optimal Design of Integrated Control System Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 복합제어시스템의 최적설계)

  • Park, Kwan-Soon;Park, Jang-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.57-64
    • /
    • 2012
  • For the vibration control of earthquake-excited buildings, an optimal design method of integrated control system considering soil-structure interaction is studied in this paper. Interaction between soils and the base of the building is simply modeled as lumped parameters and equations of motion are derived. The equations of motion are transformed into the state space equations and the probabilistic excitations such as Kanai-Tajumi power spectral density function is introduced. Then an optimization problem is formulated as finding hybrid or integrated control systems which minimizes the stochastic responses of the building structure for given constraints. In order to investigate the feasibility of the optimization method, an example design and numerical simulations are performed with tenstory building. Finally, numerical results are compared with a conventional design case that soil-structure interaction is not considered.