• Title/Summary/Keyword: soil treatment

Search Result 3,289, Processing Time 0.03 seconds

Effect of plant growth promoting bacteria on early growth of wheat cultivars

  • Lee, Sang Gyu;Lee, Hyeri;Lee, Jimin;Lee, Byung Cheon;Lee, Hojoung;Choi, Changhyun;Chung, Namhyun
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.3
    • /
    • pp.247-250
    • /
    • 2019
  • Wheat is one of the most important grains. Its consumption is increasing globally. Many countries are making efforts to increase the extent of wheat harvest. It is known that plant growth promoting rhizobacteria (PGPRs) have beneficial effects on various plants. Two PGPRs including Paenibacillus pabuli strain P7S (PP7S) and Pseudomonas nitroreducens strain IHB (PnIHB) were employed to investigate effects of PGPRs on early growth of three wheat cultivars (Koso, Seakumkang, and Jokyung). While PP7S had adverse effects on Seakumkang and Jokyung, PP7S had positive effects on Koso except root length compared to control group having no treatment of PP7S. However, all treatments with PnIHB had adverse effects on germination rate, root/shoot lengths, vigor index, and dry root/shoot weights of all three wheat cultivars. These positive effects with PP7S on Koso might be related to the earlier emergence of wheat seed above soil which is known to be an indicator of increased yield. Results of the present study suggest that if proper PGPR strains are selected, they could have positive effects on early growth rate of a wheat cultivar.

Influence of the plant growth promoting Rhizobium panacihumi on aluminum resistance in Panax ginseng

  • Kang, Jong-Pyo;Huo, Yue;Yang, Dong-Uk;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.442-449
    • /
    • 2021
  • Background: Panax ginseng is an important crop in Asian countries given its pharmaceutical uses. It is usually harvested after 4-6 years of cultivation. However, various abiotic stresses have led to its quality reduction. One of the stress causes is high content of heavy metal in ginseng cultivation area. Plant growth-promoting rhizobacteria (PGPR) can play a role in healthy growth of plants. It has been considered as a new trend for supporting the growth of many crops in heavy metal occupied areas, such as Aluminum (Al). Methods: In vitro screening of the plant growth promoting activities of five tested strains were detected. Surface-disinfected 2-year-old ginseng seedlings were dipping in Rhizobium panacihumi DCY116T suspensions for 15 min and cultured in pots for investigating Al resistance of P. ginseng. The harvesting was carried out 10 days after Al treatment. We then examined H2O2, proline, total soluble sugar, and total phenolic contents. We also checked the expressions of related genes (PgCAT, PgAPX, and PgP5CS) of reactive oxygen species scavenging response and pyrroline-5-carboxylate synthetase by reverse transcription polymerase chain reaction (RT-PCR) method. Results: Among five tested strains isolated from ginseng-cultivated soil, R. panacihumi DCY116T was chosen as the potential PGPR candidate for further study. Ginseng seedlings treated with R. panacihumi DCY116T produced higher biomass, proline, total phenolic, total soluble sugar contents, and related gene expressions but decreased H2O2 level than nonbacterized Al-stressed seedlings. Conclusion: R. panacihumi DCY116T can be used as potential PGPR and "plant strengthener" for future cultivation of ginseng or other crops/plants that are grown in regions with heavy metal exposure.

Rapid micropropagation of wild garlic (Allium victorialis var. platyphyllum) by the scooping method

  • Jeong, Mi Jin;Yong, Seong Hyeon;Kim, Do Hyeon;Park, Kwan Been;Kim, Hak Gon;Choi, Pil Son;Choi, Myung Suk
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.213-221
    • /
    • 2022
  • Wild garlic (Allium victorialis var. platyphyllum, AVVP) is a nontimber forest product used as an edible and medicinal vegetable. AVVP is usually propagated form offspring bulbs but it takes a long time to harvest. Using tissue culture technology could overcome this problem. This study investigated the optimal conditions for shoot multiplication, root growth, and plant growth by scooping AVVP bulbs. AVVP bulbs harvested from Ulleung Island, Korea, the main producer of AVVP, were surface-sterilized and used for in vitro propagation. Shoot multiplication was performed by the scooping method. More than five multiple shoots were induced from scooped tissue in Quoirin and Lepoivre (QL) medium containing plant growth regulators (PGRs); the maximum number of multiple shoots were induced from scooped tissue in QL medium containing 0.45 μM thidiazuron (TDZ) after 16 weeks of culture. Roots were induced directly at the base of the shoots in all treatments. In vitro rooting depended on the type of PGRs, and the best root-inducing treatment was QL medium containing 9.84 μM indole-3-butyric acid (IBA). Plants with in vitro roots were transferred to pots containing artificial soil and successfully acclimatized for 4 weeks. The acclimatized plants showed a survival rate of 80% after 20 weeks and gradually promoted growth depending on the acclimatization period. The results of this study will be of great help to AVVP dissemination through sustainable mass propagation.

Waste and Recycling Status of Europe, Japan and USA (유럽, 일본, 미국의 폐기물 및 재활용 현황)

  • LEE, Sang-hun;YOO, Kyoungkeun
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.92-101
    • /
    • 2021
  • The status of waste generation and recycling in 32 countries in the European Union (EU), Japan, and the United States was investigated and summarized to encourage overseas market expansion for domestic urban mining industries. Among the 32 EU countries, Germany has the highest amount of material consumption and generates the largest quantity of waste. Minerals such as mine and soil wastes constitute the largest type of waste in the EU. With respect to waste treatment techniques, landfill and recycling are applied to 39% and 38% of the waste, respectively, implying the necessity to promote recycling. Japan's total waste generation declined recently to less than 400 million tons. The largest amount of waste is generated by the manufacturing industries. The proportion of total recycled waste is estimated to be slightly over 50%, but the proportions are greater than 90% for metal scrap and 60% for waste plastics. The amount of waste produced in the United States recently exceeded 265 million tons; 52.1% of the waste is landfilled, while only 25.1% is recycled. Therefore, the recycling industry has to be developed further.

Enhancement of Disease Control Efficacy of Chemical Fungicides Combined with Plant Resistance Inducer 2,3-Butanediol against Turfgrass Fungal Diseases

  • Duraisamy, Kalaiselvi;Ha, Areum;Kim, Jongmun;Park, Ae Ran;Kim, Bora;Song, Chan Woo;Song, Hyohak;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.38 no.3
    • /
    • pp.182-193
    • /
    • 2022
  • Turfgrass, the most widely grown ornamental crop, is severely affected by fungal pathogens including Sclerotinia homoeocarpa, Rhizoctonia solani, and Magnaporthe poae. At present, turfgrass fungal disease management predominantly relies on synthetic fungicide treatments. However, the extensive application of fungicides to the soil increases residual detection frequency, raising concerns for the environment and human health. The bacterial volatile compound, 2,3-butanediol (BDO), was found to induce plant resistance. In this study, we evaluated the disease control efficacy of a combination of stereoisomers of 2,3-BDO and commercial fungicides against turfgrass fungal diseases in both growth room and fields. In the growth room experiment, the combination of 0.9% 2R,3R-BDO (levo) soluble liquid (SL) formulation and 9% 2R,3S-BDO (meso) SL with half concentration of fungicides significantly increased the disease control efficacy against dollar spot and summer patch disease when compared to the half concentration of fungicide alone. In field experiments, the disease control efficiency of levo 0.9% and meso 9% SL, in combination with a fungicide, was confirmed against dollar spot and large patch disease. Additionally, the induction of defense-related genes involved in the salicylic acid and jasmonic acid/ethylene signaling pathways and reactive oxygen species detoxification-related genes under Clarireedia sp. infection was confirmed with levo 0.9% and meso 9% SL treatment in creeping bentgrass. Our findings suggest that 2,3-BDO isomer formulations can be combined with chemical fungicides as a new integrated tool to control Clarireedia sp. infection in turfgrass, thereby reducing the use of chemical fungicides.

Comparative Analysis of the Phyto-compounds Present in the Control and Experimental Peels of Musa paradisiaca used for the Remediation of Chromium Contaminated Water

  • Kaniyappan, Vidhya;Rathinasamy, Regina Mary;Manivanan, Job Gopinath
    • Mass Spectrometry Letters
    • /
    • v.13 no.4
    • /
    • pp.166-176
    • /
    • 2022
  • Banana peels are also widely used as bio-adsorbent in the removal of chemicals contaminants and heavy metals from water and soil. GC-MS plays an essential role in the phytochemical analysis and chemo taxonomic studies of medicinal plants containing biologically active components. Intrinsically, with the use of the flame ionization detector and the electron capture detector which have very high sensitivities, Gas chromatography can quantitatively determine materials present at very low concentrations and most important application is in pollution studies. In the present study banana peels were used as bio-adsorbent to remediate the heavy metal contaminated water taken from three different stations located around the industrial belts of Ranipet, Tamilnadu, India. The AAS analysis of the samples shows a decrement of chromium concentration of 98.93%, 96.16% and 96.5% in Station 1, 2 and 3 respectively which proves the efficiency of the powdered peels of Musa paradisiaca. The GC-MS analysis of the control and treated peels of Musa paradisiaca reveals the presence of phytochemicals like Acetic Acid, 1-Methylethyl Ester, DL-Glyceraldehyde Dimer, N-Hexadecanoic Acid, 3-Decyn-2-Ol, 26-Hydroxy, Cholesterol, Ergost-25-Ene-3,5,6,12-Tetrol, (3.Beta.,5.Alpha.,6.Beta.,12.Beta.)-, 1-Methylene-2b-Hydroxymethyl-3, and 3-Dimethyl-4b-(3-Methylbut-2-Enyl)-Cyclohexane in the control banana peels. The banana peels which were used for the treatment reveals the changes and alteration of the phytochemicals. It is concluded that the alteration in phytochemicals of the experimental banana peels were due to adsorption of chromium heavy metal from the sample.

Control of Persulfate Activation Rate and Improvement of Active Species Transfer Rate Using Selenium-modified ZVI (셀레늄으로 개질된 영가철을 이용한 과황산 활성화 속도 조절 및 활성종 전달율 향상에 관한 연구)

  • Hee-won Kwon;Hae-Seong Park;In-seong Hwang;Jeong-Jin Kim;Young-Hun Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.1
    • /
    • pp.57-65
    • /
    • 2023
  • The advanced oxidation treatment using persulfate and zero-valent iron (ZVI) has been evaluated as a very effective technology for remediation of soil and groundwater contamination. However, the high rate of the initial reaction of persulfate with ZVI causes over-consumption of an injected persulfate, and the excessively generated active species show a low transfer rate to the target pollutant. In this study, ZVI was modified using selenium with very low reactivity in the water environment with the aim of controlling the persulfate activation rate by controlling the reactivity of ZVI. Selenium-modified ZVI (Se/ZVI) was confirmed to have a selenium coating on the surface through SEM/EDS analysis, and low reductive reactivity to trichlroethylene (TCE) was observed. As a result of inducing the persulfate activation using the synthesized Se/ZVI, the persulfated consumption rate was greatly reduced, and the decomposition rate of the model contaminant, anisole, was also reduced in proportion. However, the final decomposition efficiency was rather increased, which seems to be the result of preventing persulfate over-consumption. This is because the transfer efficiency of the active species (SO4-∙) of persulfate to the target contaminant has been improved. Selenium on the surface of Se/ZVI was not significantly dissolved even under oxidation conditions by persulfate, and most of it was present in the form of Se/ZVI. It was confirmed that the persulfate activation rate could be controlled by controlling the reactivity of ZVI, which could greatly contribute to the improvement of the persulfate oxidation efficiency.

Physiological Response of Barley to Salt Stress at Reproductive Stage (보리 생식생장기의 염(NaCl)처리가 수량 및 몇 가지 생리적 반응에 미치는 영향)

  • Choi, Won-Yul;Park, Jong-Hwan;Kwon, Yong-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.687-692
    • /
    • 1997
  • The barley grown in pot-soil was treated with the NaCl solution of -20 bar in osmotic potential for 10 days, varying the time of treatment: from 20th day before heading; from 10th day before heading and the time of heading. The greatest injury was observed in the case of salt stress at heading or at 10th day before heading: Culm length decreased by 87% : the number of spikes per plant by 82% ; the number of grain per spike by 92% : 1, 000-grain weight by 94% ; yield per pot by 75%. The results also greatly varied depending upon the cultivars and the time of salt stress. Salt stress at the time of heading or at 10th day before heading remarkably decreased yield and yield components. And in terms of grain yield the salt resistance was high in the order of Baegdong, Albori, Hyangmaeg, Olbori and Durubori.

  • PDF

Case Study of Radiation Protection and Radiation Exposure (방사능 노출과 방사선 보호 사례 연구)

  • Young Sil Min
    • Advanced Industrial SCIence
    • /
    • v.2 no.3
    • /
    • pp.1-7
    • /
    • 2023
  • Recently, it is increasing that a issue of concern about radiation exposure. It affects soil, water, air, crops, etc., and in the long term, environmental pollution and food pollution occur, and it is considered to cause social problems and economic damage. Radiation exposure causes diseases and health problems, but as a method for diagnosing diseases, nuclear medicine tests such as X-ray imaging, CT, and PET-CT are conducted, and radiation isotopes are exposed for the purpose of cancer treatment. A Hungarian case study on radiation in water, particularly drinking water, following the release of radioactive waste from Fukushima, and an examination of the Larsemann Hills area in Antarctica, found that it was within the prescribed radioactivity limits of drinking water recommended by the World Health Organization. We looked at radioprotective agents, focusing on DNA damage, cell and organ damage, and cancer, and also investigated various literatures on ACE inhibitors, antioxidants, and natural substances among restoration materials. Although exposed to radiation in everyday life, the reason why it can be safe is probably because there is a radiation protection material and a recovery material for radiation exposure, so we are trying to find possible materials.

Assessment of Contamination of Harbor Dredged Materials for Beneficial Use (항만준설토사 유효활용을 위한 오염도 평가)

  • Yoon, Gil-Lim;Jeong, Woo-Seob
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.15-25
    • /
    • 2008
  • Contamination level assessment of harbor dredged materials is carried out for beneficial use, which generated annually due to port construction and maintenance of harbor channel. The basic purpose of environmental risk assessment was a scientific approach to susceptibility of hazard risk to human's health from different dredged materials. And this paper proposes a guideline of safely beneficial use of dredged materials at both industrial area and residental area, generated from major port execution throughout a sound investigation of their contamination levels. Newly proposed guidelines were in general higher levels compared to both current guidelines of treatment and use of dredged materials and soil environment protection levels. Finally, environmental assessment results of dredged material contamination generated in major ports of Korea for beneficial use based on pre-assessment environmental levels show that some port's dredged materials contain heavy metals such as Cd, As, Cr and Zn, more than base levels which requires more precise contamination investigation. Others were found to be very appropriate for beneficial use.