• Title/Summary/Keyword: soil treatment

Search Result 3,296, Processing Time 0.029 seconds

Effect of Phyllite Application on Physical and Chemical Properties of Soil, Growth and Inorganic Nutrient Uptake of Crops (천매암의 시용이 토양의 이화학적 특성과 작물의 생육 및 무기성분 흡수에 미치는 영향)

  • Kim, Hyun-Tae;Kang, Se-Won;Seo, Dong-Cheol;Moon, Sung-Dong;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.2
    • /
    • pp.97-103
    • /
    • 2016
  • BACKGROUND: Clay mineral is well known to improve physico-chemical of soil. The objective of this study was to investigate the growth characteristics and inorganic nutrient contents of crops with application levels of phyllite.METHODS AND RESULTS: Both young radish and lettuce were selected as target crops for this study. The experiment was conducted in a wagner pot(1/5000a) in glass house at Sunchon National University. Treatment conditions were divided P0NPK(No phyllite + NPK), P5NPK(phyllite 5 Mg/ha + NPK), P10NPK(phyllite 10 Mg/ha + NPK) and P15NPK(phyllite 15 Mg/ha + NPK) by crops, respectively. Bulk density and porosity of soil in control without treatment conditions were ranged from 1.02 ∼1.04 g/cm3 and 56.5∼57.0%, respectively, and those for treatments with phyllite were in the ranged from 0.94∼1.00 g/cm3 and 58.4∼63.5%, respectively. Dry weights of young radish and lettuce were higher in P15NPK treatment than those in other treatments. The amounts of T-N, T-P and K uptake in young radish with phyllite application treatments were increased 36∼115, 18∼67 and 20∼76% than without phyllite application treatment, respectively. In lettuce treatments, amounts of T-N, T-P and K uptake were intended to all tested treatments similar with result of young radish treatment.CONCLUSION: Therefore, these results confirm that phyllite application to the soil improves physico-chemical of soil in addition to improving growth of young radish and lettuce.

Development of the Ecological Restoration Technique using Direct Seeding without Soil Molding in Abandoned Coal Mine Areas (무복토 직파에 의한 석탄 폐광지의 생태적 복원 기술 개발)

  • Jeong, Yongho;Lim, Joohoon;Lee, Imkyun;Kim, Hyesoo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.6
    • /
    • pp.76-85
    • /
    • 2009
  • This study was carried to select the proper vegetation base materials which improve soil quality in abandoned coal mine areas. Also, we aimed at the feasibility of the direct seeding method without soil molding for the ecological restoration in those areas. We set total eight plots within the study site established on an abandoned coal mine area near Taebaek city, Gangwon province in April 2006. The plots were classified as two groups(straw mats mulching and no mulching), and the four treatments (C; control, MI; microbial innoculation, WC; wood chip, OF; organic fertilizer) were applied in each two groups for the soil conditioning. The survival of Pinus densiflora was highest among other species(Betula platyphylla var. japonica, Amorpha fruticosa and Arundinella hirta). For the non straw mat, the survival rate of Pinus densiflora seedlings was highest in the WC treatment($1,756trees/m^2$). For the straw mat, survival rate of Pinus densiflora seedlings was also highest in the WC treatment ($1,622trees/m^2$). In addition, for the non straw mat, the height growth of Pinus densiflora seedling was highest in the OF treatment($12.4{\pm}3.9cm$). For the straw mat, the height growth of Pinus densiflora seedling was also highest in the OF treatment($18.7{\pm}5.3cm$). In general, organic fertilizer treatment with the straw mat was most effective for seedling growth. Also, we suggested that the direct seeding method without soil molding could be sufficiently possible for revegetating abandoned coal mine, Korea.

Effects of Materials of Drainage Layer at the Reclaimed Soil Base on Tree Growth at the Open Space of Saemangeum Sea Dike (새만금 방조제 개활지의 준설토 기반에 대한 배수층재 처리가 수목 생육에 미치는 효과)

  • Lee, Hanna;Lim, Joo-Hoon;Koo, Namin;Bae, Sang-Won
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.1
    • /
    • pp.13-23
    • /
    • 2015
  • This study was performed to compare the effects of different drainage layers on tree growth at the exposed sites of Saemangeum sea dike. 4 types of drainage layers including control(dredged soil), specially prepared bark, gravel, and wood chip were set in 150~165cm depth of soil. Pinus thunbergii and Celtis sinensis were planted after 9 months of soil treatment. Electrical conductivity(EC) of soil in all treated plots were decreased under $4dS{\cdot}m^{-1}$, and NaCl(%) was decreased under 0.05% after 1 year from soil treatment. Soil moisture at the 120cm depth of the bark treated plot was higher than that of the 180cm soil depth, below the drainage layer. It is considered that vertical mobility of water was inhibited. Organic matter(OM) at the 120cm soil depth increased at bark and wood chip treated plots. Survival rates after 4 years of P. thunbergii and C. sinensis were 100% in all treatments. The height of P. thunbergii was not significantly different among the treatments while the height of C. sinensis was significantly different among the treatments and it was highest at the bark treated plot.

The Occurrence and Treatment Status of Off-site Contaminated Soils in Korea (국내 오염토양 반출정화사업 현황)

  • Han, SuHo;Jung, MungChae;Kim, JeongWook;Jeon, SoonWon;Nguyen, Quoc Tuan;Yoon, KyungWook;Min, SeonKi
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.1-6
    • /
    • 2020
  • Recently, ex-situ remediation technologies has been emerging to clean up contaminated soils mainly because the in-situ techniques have limited applicability and technical difficulties in relatively small contaminated sites. Accordingly, implementation of off-site treatment and disposal have been continuously increased in soil remediation and restoration projects in Korea. However, in many cases, reclaimed soil is still not properly recycled or reused. Therefore, there is an urgent need to document the current status of soil management practices in soil remediation projects in the nation. This study presents a survey of soil contamination status and remedial approaches in Korea based on soil cleanup projects completed in 2015 - 2019, and proposes the possible options of the recycling or reusing the reclaimed soils under compliance with related regulations. The results of the soil survey showed soil contamination was most severe in gas stations, industrial facilities, and military areas. The major types of pollution were related to the petroleum-contaminated site (TPH and BTEX) with 77.0% occurrence in all the contaminated sites. The reclaimed soils were mostly reused as a ground filling-up soils in industrial facilities (60.0%) and warehouses (37.0%).

Laboratory Study on Changes in Hydraulic Conductivity and Chemical Properties of effluent of Soil During Desalinization (간척지(干拓地) 제염과정(除鹽過程)에서 일어나는 토양(土壤)의 수리전도도(水理傳道度)와 유출액(流出液)의 화학적(化學的) 특성변화(特性變化)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Yoo, Sun-Ho;Lee, Sang-Mo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.1
    • /
    • pp.3-10
    • /
    • 1988
  • A laboratory study was carried out to investigate the effects of application level of soil amendments, mixing method of soil amendments, and compost treatment on desalinization by examining the changes in hydraulic conductivity and chemical properties of effluent of the soil during desalinization. 1. The treatment of soil amendments brought about the increase in hydraulic conductivity. 2. The higher the application level of a soil amendment, the higher the hydraulic conductivity and the shorter the time elapsed to complete the desalinization. 3. Complete mixing of calcium compounds was more effective for desalinization than surface mixing. 4. The compost treatment induced the rise in pH and therefore brought about the remarkable drop in hydraulic conductivity. 5. During the desalinization, the changes in physical and chemical properties of the soil were influenced by the kind and application level of soil amendments, mixing method of soil amendment, and compost treatment.

  • PDF

Effects of Spinning Speed and Heat Treatment on the Mechanical Property and Biodegradability of Polylactic Acid Fibers (제사속도와 열처리에 따른 polylactic acid 섬유의 물성 및 생분해성 변화)

  • Park Chung-Hee;Hong Eun-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.4 s.152
    • /
    • pp.607-614
    • /
    • 2006
  • This study was carried out to suggest the optimal spinning process condition which provides a proper range of tenacity and biodegradability as textile fibers. The effects of the melt spinning speed and heat treatment on the mechanical property and biodegradability of polylactic acid fiber were investigated. Polylactic acid(PLA) was spun in a high spinning speed of $2000{\sim}4000m/min$. Each specimen was heat-treated at $100^{\circ}C$ during 30min. Mechanical properties such as breaking stress and the degree of crystallinity were evaluated using WAXS. Biodegradability was estimated from the decrease of breaking stress, weight loss, and the degree of crystallinity after soil burial. Experimental results revealed that heat treated specimens showed higher breaking stress than untreated specimens, but the increase was not so high as was expected from the remarkable change of crystallinity by heat treatment. It was concluded that breaking stress was more influenced by spinning speed than heat treatment. In the soil burial test, however biodegradability calculated from weight loss was more influenced by heat treatment than spinning speed.

Loess and Lime Treatment for Modification of Waterworks Sludges (황토와 석회의 혼합처리에 의한 정수 슬러지의 개질화에 관한 연구)

  • Lim, Sung-Jin;Cho, Jae-Jun;Lee, Jae-Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.4
    • /
    • pp.318-327
    • /
    • 2000
  • Sludge production from water treatment plants is increasing each year because water resources deterioration is proceeding and water supply facilities are growing due to water demand increase. Water treatment plant sludges can be modified to soil cover in sanitary landfilling site through the lime treatment and other alternatives. The compression strength of $1.0kg/cm^2$ is necessary for the dozer operation on soft son cover material at municipal landfilling site. Modified sludge was experimentally produced in this study with lime, bentonite, loess, and activated loess dosing. X-ray diffraction patterns of the limed water treatment plant sludge confirmed the presence of calcium carbonate and ettringite. Unconfined compression strength properties of modified sludges showed material property improvement applicable for soil cover alternatives. When adding 20-30% activated loess to water treatment plant sludges. the modified sludges could reach the compression strength for cover soil after 7 days solidification reaction, but decrease of compression strength was intentioned in 28 days reaction period. Solidification effect of the modified sludge with activated loess was observed through the scanning electron microscope.

  • PDF

Effects of Minimum Furrow Mulching with Weed Straw and Gravel Furrow Barrier on Soil Conservation at Potato Field in Gangwon Highland (골부초와 자갈대에 의한 고랭지 감자재배지 토양보전 효과)

  • Park, Chol-Soo;Jung, Yeong-Sang;Joo, Jin-Ho;Lee, Won-Jung;Yang, Jae-E.
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.1
    • /
    • pp.29-33
    • /
    • 2005
  • To develop proper soil management practices for reducing soil erosion, experiments were carried out by using lysimeters in Pyeongchang highland, Korea. Lysimeters installed at Hoenggye bad 13% slope, 15 m slope length and 3 m width. Lysimeters with 23% slope, 15 m slope length and 3 m width were also installed at Yongsan. Soil textures in Hoenggye and Yongsan lysimeter plots were silty clay loam and sandy loam, respectively. In the lysimeters potato was cultivated, and slant furrow culture and contour culture were applied. Up-down furrow and continuous fallow lysimeter was included in the experiments as a control plot. For the slant furrow and contour culture methods, minimum furrow mulching and gravel barrier were placed at each end of the furrows in the lysimeters from April to October in 2000 and 2001 to prevent soil and nutrient losses. In Heonggye, in two years experiments, average soil loss of 17 Mg/ha was found in the up-down and continuous fallow lysimeter and 2.6 Mg/ha from furrow minimum straw and slant furrow treatment, and 1.8 Mg/ha from slant furrow and gravel bag treatment. In the contour culture, the soil losses were further reduced. In Yongsan, soil loss in the slant furrow culture without any protection treatment was 167 Mg/ha, and the soil loss was reduce to 61 and 86 Mg/ha with minimum straw and gravel bag treatments, respectively. The soil loss could be reduced more than 45% by furrow minimum straw and gravel barrier. The furrow minimum straw or gravel bag barrier successfully reduced soil loss in clay loam soil in Heonggye, but still the treatments were not enough to reduce soil loss in saprolite piled sandy loam soil in Yongsan.

The Study on Development of Porous Media for Water Treatment (수처리용 다공성여재의 개발에 관한 연구)

  • 이영신;정상철;홍성철
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.4
    • /
    • pp.16-20
    • /
    • 1997
  • The purpose of this study is to develop of porous media for water treatment. It was made of porous media which was sinteringed on a comparative low temperature 600$\circ$C, was annexed slag (media-s) and humus soil (media-h) with material, only material kaolinite(media-k). In order to examine the characteristics of physical-chemical were used to sem, x-ray. The results of study are given porous size on media-h which was able to water treatment.

  • PDF