• 제목/요약/키워드: soil treatment

검색결과 3,289건 처리시간 0.03초

Effects of Rape Residue on Nitrogen Fertilizer Reduction in Paddy Soil under Double Cropping System

  • Cho, Hyun-Jun;Hyun, Byung-Keun;Sonn, Yeon-Kyu;Shin, Kook Sig
    • 한국토양비료학회지
    • /
    • 제49권1호
    • /
    • pp.7-11
    • /
    • 2016
  • Winter crops have been recognized as an alternative to soil management for fertility and crop productivity in paddy soil. Recently, rape has been produced at winter season and there is little research results on reduction of N fertilizer by adding rape residues for rice cultivation. In this study, we investigated the productivity and quality of rice by applying with 0, 27, 63, $90kg\;ha^{-1}$ of N fertilizer after input of rape residues into soil for two years. The highest yield of rice was average $4.68Mg\;ha^{-1}$ at the treatment applied with the $90kg\;N\;ha^{-1}$ with rape residue. It was reduced to N rate from 31.6 to $43.2kg\;N\;ha^{-1}$ in comparison to $4.53Mg\;ha^{-1}$ of maximum yield in treatment added $90kg\;N\;ha^{-1}$ with rape. Amylose content in rice was similar among treatments with/without rape residue, but protein content was lower in treatment with rape residue than in those without rape residue. In conclusion, input of rape residue in rice cultivation could be alternative to reduction of N fertilization and improvement of quality by adjusting rice productivity in paddy soil under cropping system.

우분퇴비 처리에 따른 토양내 음이온의 용출특성과 투수특성 변화 (Effects of cow manure compost on anion elution patterns and hydraulic conductivity)

  • 정덕영;김필주;박무언;이병렬;김건엽
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 1996년도 경북지부 결성 및 추계학술발표회 논문집
    • /
    • pp.131-139
    • /
    • 1996
  • To quantitatively investigate the effects of manure compost on the soil and water environment including ground water the elution patterns of anions and hydraulic conductivity wore estimated with four different depth(15, 30, 45 60cm) and four variable ratio of compost treatment(0, 2, 4, 6%) through soil column test. 1. There were over 95% of elution of chloride and nitrate within 0.1 pore volume(PV), and sulfate within 0.2 PV. With 2 ton/10a of cow manure compost treatment recommended total 40 kg/10a of anions added was recovered as effluent at the amount of 17kg chloride, 5.4kg nitrate, and 13.2kg sulfate, respectively However, phosphate rarely recovered in the effluent due to the strong affinity for sorption sites in soils. 2. In multi-layered soil column the maximum peaks of each anion eluted were retardated with increasing soil depth and the amount of organic matter(OM) treatment. 3. With increasing OM up to 2% the saturated hydraulic conductivity(SHC) was greatly decreased, but the slight decrease in SHC was found by addition of OM greater than 4%. In multi-layered soil column SHC was more effected by the lower SHV layer than by that of the higher.

  • PDF

방사성 오염 토양의 효율적 복원을 위한 처리기술 평가 연구 (A Study on The Assessment of Treatment Technologies for Efficient Remediation of Radioactively-Contaminated Soil)

  • 송종순;신승수;김선일
    • 방사성폐기물학회지
    • /
    • 제14권3호
    • /
    • pp.245-251
    • /
    • 2016
  • 발전소 해체 및 핵종누출 시 원자력 관련 시설 주변의 방사성오염 토양은 주민의 거주 및 공업용지로의 재사용을 위해 토양제염이 불가피하다. 본 논문에서는 기존 토양복원 기술을 생물학적, 물리/화학적, 열적 처리로 분류하고 각 기술의 원리 및 처리 물질을 분석 및 조사를 통해 방사성물질로 오염된 토양에 적용 가능한 기술을 선정하였다. 선정된 기술을 평가하기 위해 경제성, 적용성, 기술성을 고려하였다. 또한 High, Medium, Low로 가중치를 적용하여 평가하였다. 이에 따른 결과값을 바탕으로 방사성물질로 오염된 토양에 가장 적합한 토양제염 방법을 제시하고자 한다.

Characteristics of Greenhouse Gas Emission in the Upland Soil Applied with Agricultural Biomass

  • Park, Woo-Kyun;Kim, Gun-Yeob;Lee, Sun-Il;Shin, Joung-Du;Jang, Hee-Young;So, Kyu-Ho
    • 한국토양비료학회지
    • /
    • 제47권5호
    • /
    • pp.381-389
    • /
    • 2014
  • $NH_4$-N contents in the soil treated were relatively high in the initial stages, but rapidly decreased at 124 days after treatment. $NO_3$-N contents were shown to be opposite patterns of $NH_4$-N contents. $CO_2$ emissions in the non-treatment and Carbonized rice hull treatment with application of NPK fertilizers decreased by 43.7 and 21.9% relative to the non-application of NPK fertilizer plot except 5.4% increasement in the pig manure compost treatment. $N_2O$ emissions of the non-application, the Expander rice hull application, and bio-char treatment increased by 90, 25, and 21.4%, respectively, but decreased by 54.2% in the pig manure compost treatment applied with NPK fertilizers compared with the NPK fertilizer non-application plot.

Geotechnical engineering behavior of biopolymer-treated soft marine soil

  • Kwon, Yeong-Man;Chang, Ilhan;Lee, Minhyeong;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제17권5호
    • /
    • pp.453-464
    • /
    • 2019
  • Soft marine soil has high fine-grained soil content and in-situ water content. Thus, it has low shear strength and bearing capacity and is susceptible to a large settlement, which leads to difficulties with coastal infrastructure construction. Therefore, strength improvement and settlement control are essential considerations for construction on soft marine soil deposits. Biopolymers show their potential for improving soil stability, which can reduce the environmental drawbacks of conventional soil treatment. This study used two biopolymers, an anionic xanthan gum biopolymer and a cationic ${\varepsilon}-polylysine$ biopolymer, as representatives to enhance the geotechnical engineering properties of soft marine soil. Effects of the biopolymers on marine soil were analyzed through a series of experiments considering the Atterberg limits, shear strength at a constant water content, compressive strength in a dry condition, laboratory consolidation, and sedimentation. Xanthan gum treatment affects the Atterberg limits, shear strength, and compressive strength by interparticle bonding and the formation of a viscous hydrogel. However, xanthan gum delays the consolidation procedure and increases the compressibility of soils. While ${\varepsilon}-polylysine$ treatment does not affect compressive strength, it shows potential for coagulating soil particles in a suspension state. ${\varepsilon}-Polylysine$ forms bridges between soil particles, showing an increase in settling velocity and final sediment density. The results of this study show various potential applications of biopolymers. Xanthan gum biopolymer was identified as a soil strengthening material, while ${\varepsilon}-polylysine$ biopolymer can be applied as a soil-coagulating material.

Alkaline induced-cation crosslinking biopolymer soil treatment and field implementation for slope surface protection

  • Minhyeong Lee;Ilhan Chang;Seok-Jun Kang;Dong-Hyuk Lee;Gye-Chun Cho
    • Geomechanics and Engineering
    • /
    • 제33권1호
    • /
    • pp.29-40
    • /
    • 2023
  • Xanthan gum and starch compound biopolymer (XS), an environmentally friendly soil-binding material produced from natural resources, has been suggested as a slope protection material to enhance soil strength and erosion resistance. Insufficient wet strength and the consequent durability concerns remain, despite XS biopolymer-soil treatment showing high strength and erosion resistance in the dried state, even with a small dosage of soil mass. These concerns need to be solved to improve the field applicability and post-stability of this treatment. This study explored the utilization of an alkaline-based cation crosslinking method using calcium hydroxide and sodium hydroxide to induce non-thermal gelation, resulting in the enhancement of the wet strength and durability of biopolymer-treated soil. Laboratory experiments were conducted to assess the unconfined compressive strength and cyclic wetting-drying durability performance of the treated soil using a selected recipe based on a preliminary gel formation test. The results demonstrated that the uniformity of the gel structure and gelling time varied depending on the ratio of crosslinkers to biopolymer; consequently, the strength of the soil was affected. Subsequently, site soil treated with the recipe, which showed the best performance in indoor assessment, was implemented on the field slope at the bridge abutment via compaction and pressurized spraying methods to assess feasibility in field implementation. Moreover, the variation in surface soil hardness was monitored periodically for one year. Both slopes implemented by the two construction methods showed sufficient stability against detachment and scouring, with a higher soil hardness index than the natural slope for a year.

콩의 산성비 피해경감을 위한 석회물질의 시용효과 (Effect of Lime Materials Application on Reducing Injury of Simulated Acid Rain in Soybean)

  • 김복진;백준호;김흥규
    • 한국환경농학회지
    • /
    • 제16권2호
    • /
    • pp.175-180
    • /
    • 1997
  • 산성비에 의한 작물의 피해경감방안을 구명하고자 pot시험으로 사양토에 콩(단엽콩)을 공시작물로하여 석회물질을 토양(소석회), 엽면(석회유 1%, 석회유 2%), 토양 및 엽면(소석회+석회유 1%, 소석회+석회유 2%)에 처리하고, 인공산성비(pH 2.7)를 10mm씩 2일간격으로 50회 살포한 후 콩의 생육, 수량 및 수량구성요소, 가시적 엽피해율, 엽록소 함량, 광합성 능력, 식물체중 무기성분 함량, 시험후 토양의 이화학적 특성 등을 분석조사한 결과는 다음과 같다. 1. 인공산성비 45회 살포후 경장은 석회유 2%구에서, 엽수는 소석회+석회유 1%구에서 가장 컸으며, 엽폭, 경경, 개체당 분지수는 처리간에 유의성없이 비슷하였다. 인공산성비 살포에 의하여 전처리구에서 종실 수량이 감소하였으나, 석회물질의 처리구에서 종실 수량이 증가하였으나, 특히 소석회+석회유 1%구가 가장 좋았다. 2. 인공산성비 15 및 45회 살포후 엽피해율 경감효과는 석회물질의 시용이 효과적이었다. 3. 인공산성비 45회 살포후 엽록소 함량은 소석회+석회유 1%구에서 가장 높았으며, 인공산성비 30회 살포후 광합성 능력은 소석회구에서 가장 좋았다. 4. 인공산성비 살포로 식물체중 질소, 인산, 황 등의 함량이 증가되었으며, 소석회를 토양에 처리함으로써 식물체중 질소, 카리, 석회 등의 함량이 증가하는 경향이었다. 5. 인공산성비 살포로 토양의 pH는 낮아졌으나, 질소 및 황 함량은 증가되는 경향이었고, 인산, 석회, 카리, 고토등의 함량은 감소되는 경향이었다.

  • PDF

하수처리수의 농업용수 재이용이 토양 및 작물의 중금속 함량에 미치는 영향 분석 (Impact of Reclaimed Wastewater Irrigation on Heavy Metal Contamination in Soil and Vegetables)

  • 김학관;장태일;이은정;박승우
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.827-831
    • /
    • 2008
  • In this study, the effects of reclaimed wastewater irrigation on the concentration of heavy metals such as lead, zinc, cadmium, and copper in soil and vegetables were investigated by monitoring an experimental area irrigated with reclaimed wastewater. Three treatments and three replications on $10{\times}2$-m plots were installed and heavy metal concentrations in soil and vegetables were monitored from 2005 to 2007. The treatments applied in this study were groundwater irrigation (control treatment), wastewater irrigation, and irrigation with filtered reclaimed wastewater treated with ultraviolet light. The monitored results showed that the concentrations of Cu, Cd, and Pb in soil during the experimental period were lower than initial soil levels before irrigation, whereas Zn increased in all treatment plots. However, the ranges of Zn, Cu, Cd and Pb in soil were below the soil pollution standards in the Republic of Korea. Heavy metal concentrations in vegetables showed insignificant variations for all treatments.

  • PDF

Effect of Soil Ameliorators on Ectomycorrhizal Fungal Communities that Colonize Seedlings of Pinus densiflora in Abandoned Coal Mine Spoils

  • Lee, Eun-Hwa;Eo, Ju-Kyeong;Lee, Chang-Seok;Eom, Ahn-Heum
    • Mycobiology
    • /
    • 제40권3호
    • /
    • pp.168-172
    • /
    • 2012
  • In this study, the effect of soil ameliorators on ectomycorrhizal (ECM) fungal communities in coal mine spoils was investigated. Organic fertilizers and slaked lime were applied as soil ameliorators in 3 abandoned coal mine spoils. One year after the initial treatment, roots of Pinus densiflora seedlings were collected and the number of ECM species, colonization rate, and species diversity were assessed. The results showed that the soil ameliorators significantly increased ECM colonization on the roots of P. densiflora. The results suggest that soil ameliorators can have a positive effect on ECM fungi in terms of growth of host plants and show the potential use of soil ameliorator treatment for revegetation with ECM-colonized pine seedlings in the coal mine spoils.

토양개량제 혼합비율이 Green Topsoil의 물리 화학성에 미치는 영향 (Effects of Source and Mixing Ratio of Topsoil onPhysicoChemical Properties of Green)

  • 박찬무;한동식;황규석;이용범
    • 아시안잔디학회지
    • /
    • 제5권2호
    • /
    • pp.59-68
    • /
    • 1991
  • This experiment was carried out to investigate the mixing ratio of soil amending materials such as peat perlite, active carbon and zeolite for improvements of physiochemical properties of topsoil, of creeping bentgrass (Agrostis palustris var. Penncross). The results were as followed :1.Appropriate addition of soil improvement material was increased the soil porosity due to the decrease of bulk density. Over supplement of soil improvement material induced the decrease of infiltration of water into soil.2Content of organic matter was increased in treatment of peat and active carbon . Soil reaction was decreased in peat treatment, but increased in perlite, zeolite and active carbon. Exchangeable cation capacity was increased by the addition of all kinds of soil improvement materials used in this experiment.

  • PDF