• Title/Summary/Keyword: soil texture

Search Result 651, Processing Time 0.023 seconds

Release Pattern of Urea from Metal-urea-clay Hybrid with Montmorillonite and Its Impact on Soil Property

  • Kim, Kwang-Seop;Choi, Choong-Lyeal;Lee, Dong-Hoon;Seo, Young-Jin;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.545-550
    • /
    • 2011
  • Urea intercalated into montmorillonite (MT) exhibits remarkably enhanced N use efficiency, maintaining its fast effectiveness. This study dealt with the release property of urea from metal-urea-clay hybrid with MT (MUCH) under continuous-flow conditions and the cumulative impacts of its successive application on physicochemical properties of soils. Releases of urea were completed within 4 hrs under continuous-flow condition regardless of the types and the leaching solutions. However, urea release property was significantly affected by both the form of fertilizer and the presence of electrolytes in solution. The fast release property of urea from MUCH in continuous-flow condition was not significantly affected by soil properties such as soil pH and soil texture. In addition, its successive application did not lead to any noticeable change in soil physicochemical properties, water stable aggregate rate, water holding capacity and cation exchange capacity in both sandy loam and clay loam soils. Therefore, this study strongly supported that urea intercalated into MT could be applied as fast-effective N fertilizer, in particular for additional N supply.

Relative Sensitivity Analysis of the Soil Water Characteristics Curve

  • Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.712-723
    • /
    • 2015
  • This study was conducted to develop the SWCC estimation equation using scaling technique, and to investigate relative sensitivity of the SWCC according to the soil water tension, for the four kinds of soil texture such as Sand [S], Sandy Loam [SL], Loam [L] and Clay Loam [CL]. The SWCC estimation equation of scale factor [${\Theta}sc$] (Eq. 1) was developed based on the log function (Eq. 2) and exponential function (Eq. 3). ${\Theta}sc=[({\Theta}-{\Theta}r)/({\Theta}s-{\Theta}r)]$ (Eq. 1) ${\Theta}sc=-0.196ln(H)+0.4888$ (Eq. 2) ${\Theta}sc=0.3804(H)^{(-0.448)}$ (Eq. 3) where, ${\Theta}$: water content (g/g %), ${\Theta}s$: water content at 0.1bar, ${\Theta}r$: water content at 15bar, H: soil water tension (matric potential) (bar) Relative sensitivity of soil water content was decreased as increase soil water tension, those according to soil water tension were 0.952~0.620 compared to 0.1bar case. Relative sensitivity of scale factor was also decreased as increase soil water tension, those according to soil water tension were 0.890~0.577 compared to 0.2bar case.

Test for the TOPMODEL′s Ability to Predict Water Table Depths of the Transient Saturation Zones which Are Formed on the Steep Hillslope (급사면에 형성된 일시적 포화대의 지하수면깊이에 대한 TOPMODEL의 예측능력 검증)

  • An, Jung-Gi
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.1035-1046
    • /
    • 2003
  • In order to evaluate the TOPMODEL's prediction ability for spatial distribution of water table depths, two major assumptions and governing equation of water table depth are tested. For the test, data of hydrological observations are used and a soil survey is made in the steep hillslope with thin soils. Responses of water table and hydraulic properties of soil are coincident with two major assumptions of the TOPMODEL's such as water table gradient parallel to the local topographical slope and exponential decline in transmissivity with depths. Soil texture and the decline rate of transmissivity(f) we homogeneous in space at the 0∼0.3m depths of the soil of the hillslope, but they are heterogeneous in space below its 0.3m depths due to the vertical change of soil texture and the ‘f’. It is shown that the TOPMODEL's equation can be used for simulating distribution of water table depth at the depths with uniform values of the 'f'.

Study on the Desalinization in Tiolal Land (간석지 제람에 관한 연구)

  • 이중기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.2
    • /
    • pp.4695-4707
    • /
    • 1978
  • The objeative of this study is to study how to rapidly convert tidal land into cultivable land. The study of a rapid, reasonable desalinization method is conducted at Namyang tidal land which represents soil texture of tidal lands along the south west costa larea of Korea. Therefore, Researches were made at many Pilots in order to find a way of high efficiency of leaching with simpler facilities and cheaper costs. The results of study are briefly summarized as follaws: 1. Subdrainage efficieny is 35%. This is a Poorly drained area, and needs longer leaching desalinization period. 2. The efficieny of desalinization in P.V.C 16 meters plot is the same as that of mole drainage 2 meters plot. P.V.C 4 meters plot has desalinization effect as much as two times compared to P.V.C 16 meters plot. 3. Because the soil texture is silty-clay, desalinization in non-treated plot of sub-drainage and surface drainage desalinization take three times longer period in comparision with P.V.C 4 meters plot. 4. As to the desalinization rate of soluble salt in the soil, the efficieny of desalinization of the topsoil in P.V.C plots was 50% higher than that of mole drainage plot and about 170% higher than that of non-treated plot. In the deep soil salt accumulation at topsoil was observed in non-treated and mole drainage plots, but efficiency in P.V.C polt is about 40 times as high as that of mole drainage and non-treated plot. 5. As to the results of use gypsum and lime as sub-drainage soil improver, gypsum was 60% more efficieny than lime in the continuously inundated plot and 44% in the intermittently inundated plot. The efficieny of gypsum and lime in the intermittently flooded plot is 35% and 42% higher than that of continuously flooded plot reapeaticee1y.

  • PDF

Efficiency of Heavy Metal Stabilizers in Various Soils (토양 특성에 따른 중금속 안정화 효율 평가)

  • Kim, Young Hyun;Oh, Se Jin;Kum, Donghyuk;Shin, Minhwan;Kim, Dongjin;Lee, Sang Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.231-238
    • /
    • 2021
  • BACKGROUND: Metal contamination of farmlands nearby abandoned mines is a serious environmental problem. This study was conducted to evaluate the efficiency of stabilizers on different type of the soils contaminated with metals. METHODS AND RESULTS: The texture of silt loam soil initially contaminated with heavy metal was artificially adjusted to loam and sandy loam by adding sand, and the soil organic matter content (1.5%) was also altered by adding peat to the soils at 3.5 and 8.0%. The soils were mixed with 3% (w/w) of each limestone, dolomite, and steel slag. For the soils with different textures, the bioavailability of As was found to be the lowest in sandy loam compared to others metals such as Cu, Pb, and Zn. The efficacy of limestone and dolomite was not significantly different compared to the soils having different organic matter contents, but the stabilization efficiency of steel slag increased as the soil organic matter content increased. Moreover, stabilizers showed inhibition effect on the uptake of metals to plant. CONCLUSION: The stabilizers were found as effective materials to immobilize metals in soil and to decrease plant uptake of metals. Studies are needed to deeply elucidate the interaction between influencing factors and various stabilizers.

A Study on the Making Properties of Natural Pigments based on Substance Characteristics for Hwangto in Korea (국내 산출되는 황토의 특징에 따른 천연(제조)안료 특성연구)

  • Mun, Seong Woo;Kang, Yeong Seok;Park, Ju Hyun;Han, Min Su;Jeong, Hye Young
    • Journal of Conservation Science
    • /
    • v.35 no.6
    • /
    • pp.600-611
    • /
    • 2019
  • Yellow to reddish brown soil is generally referred to as hwangto and is used in various industries in Korea. Despite the fact that it is used as an inorganic pigment in dancheong, limited studies have been conducted on the properties of pigments associated with soil and on the mineralogical characteristics of hwangto. This study examines how the pedological and mineralogical features of hwangto affect pigment properties. Results indicate that reddish and yellowish soils have differences in terms of soil texture, mineral composition, oil absorption and stability under light. Reddish soil is mostly found in clay regions, whereas Ulleungdo hwangto is found in loam regions. Yellowish soil is mostly present in the clay loam to loam zones. whereas Haenam hwangto exists in the sandy clay loam zone. As a result of a mineralogical analysis, reddish soil is classified into the feldspar group and clay soil. The major minerals in the yellowish soils are similar however these soils differ in terms of clay mineral compositions. results of the characteristics of pigments prepared by the traditional method revealed that the average particle size is in the range of 10-20 ㎛, reddish soil has an average of 20 ml/100 g higher oil absorption than yellowish soil. In addition, reddish soil is more susceptible to discoloration and deterioration under light than yellowish soil. This study confirms that the soil and mineral characteristics of hwangto affect the physical properties and stability of produced pigments. These result can be used as basic data in future studies natural inorganic pigments using hwangto.

Relative Contribution rate on Soil Physico-chemical Properties Related to Fruit Quality of 'Hongro' Apple (사과 '홍로' 품종의 과실 품질에 미치는 토양이화학성의 상대적 기여도)

  • Kim, Seung-Heui;Park, Seo-Jun;Han, Jeom-Wha;Cho, Jung-Gun;Choi, Hyeong-Suk;Lim, Tae-Jun;Yun, Hea-Keun
    • Journal of Bio-Environment Control
    • /
    • v.21 no.2
    • /
    • pp.102-107
    • /
    • 2012
  • This study was carried out to investigate the optimum soil environmental conditions of ten contents on production of high quality fruit in 'Hongro' apple. The soil and fruit characteristics were analyzed at total 60 orchards in major apple producing areas such as Chungju, Moonkyeung, Yeongju, Andong, Yeosan and Yeongcheon (10 orchards an area). The soil environmental factors affected fruit weight were the highest relative contribution in saturated hydraulic conductivity of 33.3%. The cation was 24.6%, the bulk density, soil texture and solid phase were also high as relative contribution. The fruit weight was influenced by soil physical properties more than soil chemical properties. The soil environmental factors affected sugar content were highest soil texture of 21.9%, and the CEC and bulk density were low as relative contribution. The fruit coloring was the highest relative contribution in phosphate of 55.9%. While saturated hydraulic conductivity and organic matter content were low. The coloring was influenced by soil chemical properties more than soil physical properties. Fruit coloring was high influenced over 70% by soil physical properties. Finally, relative contribution on fruit quality related with sugar content, fruit weight, and coloring were high influenced by cultivation layer depth of 25.8%, soil texture 22.2%, and soil pH of 21.0% but bulk density and solid phase were low relative contribution. The fruit growth and soil chemical properties in 'Hongro' apple were very closely related. Therefore, orchard soil management to produce high quality fruit was very importance drainage management and organic matter application. We concluded that scientific soil management is possible by quanlifiable of soil management factors.

Coastal Afforestation Effect on Soil Physiochemical Properties at Sitakunda Coast of Chittagong, Bangladesh

  • Mamun, Abdullah-Al;Kabir, Md. Humayain;Kader, Mohammed Abdul;Hossain, Mohammed Kamal
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.1
    • /
    • pp.25-34
    • /
    • 2021
  • This study was conducted at Sitakunda coastal afforestation range, comprised of four beats- Bansbaria, Bakkhali, Baterkhil and Bogachattar, in Chittagong. Afforestation effects on soil physicochemical properties in comparison to adjacent barren land were analysed. In the study area, an area of 3277.33 ha was planted with Sonneratia apetala, Avecinnia officinalis, Excoecaria agallocha, Bruguiera sexangula, Ceriops decandra from 1968 to 2011. We found positive soil physicochemical changes in plantations in comparison to adjacent barren land. Soil bulk density of plantation was lower than the adjacent barren land. Soil pH and soil salinity were significantly higher in barren land whereas soil organic matter, organic carbon, nitrogen, phosphorus, potassium of plantations were higher in afforested land. Soil texture ranged from clay loam to sandy loam in different depth of these two types of land. However, this study concludes that there is clear evidence that afforestation has positive impacts on all soil properties in different location and soil depths in the study area.

A Study on the Lava Terraces with Different Elevation in Jeju (해발에 따른 제주도 용암류대지 지형의 세분화에 관한 연구)

  • Hyun, Byung-Keun;Jug, Yeon-Tae;Hyun, Geun-Soo;Moon, Kyung-Hwan;Song, Kwan-Cheol;Sonn, Yeon-Kyu;Zhang, Young-Seon;Park, Chan-Won;Hong, Suk-Young;Kim, Lee-Hyun;Choi, Eun-Young;Jang, Byeong-Chun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.88-97
    • /
    • 2009
  • This study was conducted to obtain the basic information to increase the practical use of soil survey data through the subdividing of lava shapes with soil sequences due to different elevations in Jeju. The numbers of soil series of lava topography had occupied many of whole soil series in Jeju. When its topography subdivide, it give more detailed soil information. The obtained results are as follows; The lava topography to subdivide lava topography were studied with 38 soil series according to elevation in Jeju. Division of elevation are less than 50m, 50m to 200m, and 200m to 400m and more than 400m. Name the depending on elevation, less than 50m is called lower part of lava, 50m to 200m is called middle part of lava, and 200m to 400m and more than 400m are called upper part of lava. The characteristics of lava subdivide are as follows; soil family texture of lower part of lava is fine silty to clayey, drainage classes are various, average of available soil depth is 75.3cm, average of gravely contents are 11.6%, average of slopeness is 7.2%, limiting factor are various and soil order are various. soil family texture of middle part of lava is fine silty to coarse silty, drainage classes are well to very well, average of available soil depth is 65.9cm, average of gravely contents are 14.7%, average of slopeness is 11.3%, limiting factor are ashy and soil order are Andisols and Inceptisols. Soil family texture of upper part of lave is fine silty, drainage classes are well, average of available soil depth is 72.8cm, average of gravely contents are 16.0%, average of slopeness is 14.9%, limiting factor are ashy and skeletal, and order are Andisols.

Uplift Capacity of Pipe Foundation for Single-span Greenhouse (단동 온실용 파이프 기초의 인발저항력 검토)

  • Choi, Man Kwon;Yun, Sung Wook;Kim, Ha Neul;Lee, Si Young;Yu, Chan;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.69-78
    • /
    • 2015
  • In order to provide design data support for reducing gale damage of single-span greenhouses, this paper experimentally evaluated the uplift capacity of a rafter pipe and continuous pipe foundation (anti-disaster standard), usually used for single-span greenhouses according to compaction ratio, embedded depth, and soil texture. In the reclaimed soil (Silt loam) and the farmland soil (Sandy loam), the ultimate uplift capacities of rafter pipe were 72.8kgf and 60.7kgf, respectively, and those of continuous pipe foundation were 452.7kgf and 450.3kgf, respectively at an embedded depth of 50cm and compaction rate of 85% (the hardest ground condition). The results showed that the ultimate uplift capacity of continuous pipe foundation was significantly improved at more than 6 times that of the rafter pipe. The soil texture considered in this paper had a sand content of 35%~59% and a silt content of 39%~58%, and it was shown that the ultimate uplift capacity did not have a significant difference depending on soil texture, and these results show that installing the rafter pipe and continuous pipe foundation while maintaining appropriate compaction conditions can give an advantage in securing stability in the farmland of greenhouses without significantly being influenced by soil texture. Based on the results of this paper, it was determined that maintaining a compaction rate above 75% for the continuous pipe foundation and above 85% for the rafter pipe was advantageous for securing stability in greenhouses. Especially when continuous pipe foundation of anti-disaster standard was applied, it was determined to be significantly advantageous in acquiring stability in greenhouses to prevent climate disaster.