• Title/Summary/Keyword: soil temperature and moisture

Search Result 517, Processing Time 0.036 seconds

Development of numerical model for estimating thermal environment of underground power conduit considering characteristics of backfill materials (되메움재 특성을 고려한 전력구 열환경 변화 예측 수치해석모델 개발)

  • Kim, Gyeonghun;Park, Sangwoo;Kim, Min-Ju;Lee, Dae-Soo;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.121-141
    • /
    • 2017
  • The thermal analysis of an underground power conduit for electrical cables is essential to determine their current capacity with an increasing number of demands for high-voltage underground cables. The temperature rises around a buried cable, caused by excessive heat dissipation, may increase considerably the thermal resistance of the cables, leading to the danger of "thermal runaway" or damaging to insulators. It is a key design factor to develop the mechanism on thermal behavior of backfilling materials for underground power conduits. With a full-scale field test, a numerical model was developed to estimate the temperature change as well as the thermal resistance existing between an underground power conduit and backfill materials. In comparison with the field test, the numerical model for analyzing thermal behavior depending on density, moisture content and soil constituents is verified by the one-year-long field measurement.

Studies on the Germination Characteristics of Sesame (Sesamum indicum L.) (참깨의 발아특성(發芽特性)에 관(關)한 연구(硏究))

  • Kim, Choong Soo
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.1
    • /
    • pp.28-60
    • /
    • 1983
  • This study was carried out to define the effects of external factors including temperature, moisture, oxygen and light quality on the germination of sesame seeds and to investigate the change of major chemical constituents of seeds during germination. The results obtained are summarized as follows: 1. The average germination ratio was from 95.8% to 97.2% when it was tested every $5^{\circ}C$ intervals from $20^{\circ}C$ to $35^{\circ}C$ and no significant difference in germination ratio was found within $20^{\circ}C$ to $35^{\circ}C$. But the germination ratio dropped rapidly to 32.2% when seeds were germinated at $15^{\circ}C$ and the coefficient of variation become greater(77%) 2. The days required for germination ranged from 1.16 to 1. 64 at the temperatures of $35^{\circ}C$ to $25^{\circ}C$ and they were 3.07 and 10.4 at the temperatures of $20^{\circ}C$ and $15^{\circ}C$, respectively. 3. Considering the germination ratio and days needed, $15^{\circ}C$ was assumed to be the minimum temperature for germination practically and this temperature is recommended for testing low temperature tolerance of seed germination of sesame cultivars. 4. The varieties shown the highest low temperature tolerance were Shirogoma and Turkey. The next varieties shown some degree of low temperature germination were Suweon #29, Naebok and IS 58. The varieties with 70 to 80% of germination ratio were Maepo, Suweon #14, Kimpo, Moondeok, and Haenam. Among the 90 varieties tested, the varieties with comparatively high degree of low temperature tolerance were about 10%, and 70% of the low temperature tolerant varieties were domestic varieties. 5. At $12^{\circ}C$ the Shirogoma was the only variety which showed over 50% of germination ratio, 71.4% of the varieties showed less than 20% of germination ratio. When the temperature was raised to $27^{\circ}C$ 18 days after placement at $12^{\circ}C$ all the varieties showed over 90% of germination ratio within 2days. 6. The amounts of water imbibition needed for seed germination were 0.48 to 0.62 times of the seed dry weight at $25^{\circ}C$ and were significantly different among sesame cultivars. About 63% of water required for germination was imbibed in 2 hours after placement of seeds under the germination condition. 7. Under saturated moisture condition the average germination ratio was 0.42%. In the soil of which water potential was -0.4bar 64.8% of the seeds germinated and the most adequate soil water potential for sesame seed germination was about -0.4 to -5.5 bar. The germination ratio decreased as the soil water potential declined below -5.5 bar. 8. Six out of 10 varieties were not influenced by 5% of oxygen in air germination chamber, while varieties such as Yecheon, PI 158073, IS 103 and Euisangcheon showed 64 to 91% of germination under the 5% oxygen content. Under anaerobic condition, cotyledones were not emerged but only hypocotyl was emerged and elongated. The germination ratio of IS 103 decreased significantly under anaerobic condition. 9. When the seeds were dried for 24 hours after 12 hours imbibition of water, the seeds of Cheongsong did not lose their germination ability and 27.5% was germinated but Suweon #9 and Early Russian failed to germinate. However, the germination ratio of IS 103 decreased when the seed were dried 24 hours after 4 hours imbibition of water and the germination ability of IS 103 was maintained even though the seeds were dried for 24 hours after 24 hours imbibition of water. 10. During germination, sugar content of sesame seed increased rapidly and activity of ${\alpha}$-amylase increased gradually while starch content decreased significantly. The rates of increase in sugar content and enzyme activity and decrease in starch content were significantly lower at $15^{\circ}C$ compared with those at $25^{\circ}C$. 11. During germination of sesame seeds, lipid content in the seeds dropped rapidly and the activity of alkaline lipase increased significantly at early stage of germination. The rate of decrease in lipid content and increase in emzyme activity was lower at $15^{\circ}C$ than at $25^{\circ}C$. 12. Four out of 6 varieties were not affected in germination by light wave length. But Suweon #8 was inhibited in germination by 600-650nm. and IS 103 by 600 to 650nm and 500 to 550nm of light wave length. Suweon #8 showed high germination ratio under 650 to 760 nm and 500 to 560nm, and IS 103 under 400 to 470nm and complete darkness. 13. The germination ratios increased significantly in the seeds of which 1000 grain weight is heavier. When the seeds were placed at soil 4cm deep, Cheongsong and Early Russian failed to emerge their cotyledones, but Suweon #9 and IS 103 showed 32.5 and 50% cotyledone emergence, respectively. The extracts from sesame plant and soil where the sesame was cultivated previously did not affect in the-germination of sesame seeds. 14. The covering by black or transparent polyethylene films increased germination ratio compared with uncovered seeds. The covering was effective in shortening the days needed for germination and in improving the early seedling growth, number of capsules per plant and grain yield. Difference was not so seizable between the two polyethylene films but the transparent film appeared somewhat more effective than the black one. 15. Simcheon, Cheongsong. Suweon #9. PI 158073 and IS 103 showed lower rate of water absorbtion by seed during germination and Suweon #8, Suweon #26, Orotall and Euisangcheon showed high increase in seed weight after water absorbtion by seed.

  • PDF

Assessment of the Contribution of Weather, Vegetation and Land Use Change for Agricultural Reservoir and Stream Watershed using the SLURP model (II) - Calibration, Validation and Application of the Model - (SLURP 모형을 이용한 기후, 식생, 토지이용변화가 농업용 저수지 유역과 하천유역에 미치는 기여도 평가(II) - 모형의 검·보정 및 적용 -)

  • Park, Geun-Ae;Ahn, So-Ra;Park, Min-Ji;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.121-135
    • /
    • 2010
  • This study is to assess the effect of potential future climate change on the inflow of agricultural reservoir and its impact to downstream streamflow by reservoir operation for paddy irrigation water supply using the SLURP. Before the future analysis, the SLURP model was calibrated using the 6 years daily streamflow records (1998-200398 and validated using 3 years streamflow data (2004-200698 for a 366.5 $km^2$ watershed including two agricultural reservoirs (Geumgwang8 and Gosam98located in Anseongcheon watershed. The calibration and validation results showed that the model was able to simulate the daily streamflow well considering the reservoir operation for paddy irrigation and flood discharge, with a coefficient of determination and Nash-Sutcliffe efficiency ranging from s 7 to s 9 and 0.5 to s 8 respectively. Then, the future potential climate change impact was assessed using the future wthe fu data was downscaled by nge impFactor method throuih bias-correction, the future land uses wtre predicted by modified CA-Markov technique, and the future ve potentiacovfu information was predicted and considered by the linear regression bpowten mecthly NDVI from NOAA AVHRR ima ps and mecthly mean temperature. The future (2020s, 2050s and 2e 0s) reservoir inflow, the temporal changes of reservoir storaimpand its impact to downstream streamflow watershed wtre analyzed for the A2 and B2 climate change scenarios based on a base year (2005). At an annual temporal scale, the reservoir inflow and storaimpchange oue, anagricultural reservoir wtre projected to big decrease innautumnnunder all possiblmpcombinations of conditions. The future streamflow, soossmoosture and grounwater recharge decreased slightly, whtre as the evapotransporation was projected to increase largely for all possiblmpcombinations of the conditions. At last, this study was analysed contribution of weather, vegetation and land use change to assess which factor biggest impact on agricultural reservoir and stream watershed. As a result, weather change biggest impact on agricultural reservoir inflow, storage, streamflow, evapotranspiration, soil moisture and groundwater recharge.

Changes in Physicochemical Properties and Microbial Population during Fermenting Process of Organic Fertilizer (혼합발효 유기질비료의 발효과정 중 이화학성 및 미생물밀도 변화)

  • Lee, Jong-Tae;Lee, Chan-Jung;Kim, Hee-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.116-123
    • /
    • 2004
  • This study was conducted to investigate the changes in physicochemical and microbiological properties during fermenting process of organic fertilizer which was made from the mixture of organic materials such as sesame oil cake, fish meal, blood meal, rice bran, ground bone meal, and natural minerals such as illite, crusted oyster shell and loess. They were mixed and fermented for 70 days. The sesame oil cake and rice bran, major ingredients for organic fertilizers, consisted of 7.6 and 2.6% total nitrogen, 3.6 and 4.6% $P_2O_5$, 1.4 and 2.2% $K_2O$, respectively. The ground bone meal included 29.2% $P_2O_5$ and illite included 3.8% $K_2O$. Temperature of organic fertilizer during the fermentation rapidly increased over $50^{\circ}C$ within 2 days after mixing and stabilized similar to outdoor temperature after 40 days. Moisture content decreased from 36.3 to 16.0% after 1 month. C/N ratio of organic fertilizer slightly increased until 30 days and thereafter, it slowly decreased, It resulted from the faster decrease of total nitrogen concentration compared with organic matter. Concentration of $NH_4-N$ in organic fertilizer rapidly increased from 1,504 to $5,530mg\;kg^{-1}$, the highest concentration after 10 days. Meantime, $NO_3-N$ concentration was low and constant about $150mg\;kg^{-1}$ over the whole fermenting period. This result seemed to be due to the high pH. The organic ferfilizer fermented for 70 days was composed of 2.7% N, 2.8% $P_2O_5$, 1.8% $K_2O$, and 35.9% organic matter. Total populations of aerobic bacteria, Bacillus sp. and actinomycetes, after fermenting process, were $12.5{\times}10^{10}$, $45.5{\times}10^{5}$ and $13.6{\times}10^{5}cfu\;g^{-1}$ respectively. Pseudomonas sp. was $71.9{\times}10^{7}cfu\;g^{-1}$ at first, but it rapidly decreased according to the rise of temperature. Yeasts played an important role in the early stage of fermentation and molds did in the late stage.

Assessing Future Climate Change Impact on Hydrologic Components of Gyeongancheon Watershed (기후변화가 경안천 유역의 수문요소에 미치는 영향 평가)

  • Ahn, So-Ra;Park, Min-Ji;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.1
    • /
    • pp.33-50
    • /
    • 2009
  • The impact on hydrologic components considering future potential climate, land use change and vegetation cover information was assessed using SLURP (Semi-distributed Land-Use Runoff Process) continuous hydrologic model. The model was calibrated (1999 - 2000) and validated (2001 - 2002) for the upstream watershed ($260.4\;km^2$) of Gyeongancheon water level gauging station with the coefficient of determination and Nash-Sutcliffe efficiency ranging from 0.77 to 0.60 and 0.79 to 0.60, respectively. Two GCMs (MIROC3.2hires, ECHAM5-OM) future weather data of high (A2), middle (A1B) and low (B1) emission scenarios of the IPCC (Intergovernmental Panel on Climate Change) were adopted and the data was corrected by 20C3M (20th Century Climate Coupled Model) and downscaled by Change Factor (CF) method using 30 years (1977 - 2006, baseline period) weather data. Three periods data of 2010 - 2039 (2020s), 2040 - 2069 (2050s), 2070 - 2099 (2080s) were prepared. To reduce the uncertainty of land surface conditions, future land use and vegetation canopy prediction were tried by CA-Markov technique and NOAA NDVI-Temperature relationship respectively. MIROC3.2 hires and ECHAM5-OM showed increase tendency in annual streamflow up to 21.4 % for 2080 A1B and 8.9 % for 2050 A1B scenario respectively. The portion of future predicted ET about precipitation increased up to 3 % in MIROC3.2 hires and 16 % in ECHAM5-OM respectively. The future soil moisture content slightly increased compared to 2002 soil moisture.

Stabilizing Soil Moisture and Indoor Air Quality Purification in a Wall-typed Botanical Biofiltration System Controlled by Humidifying Cycle (가습 주기에 따른 벽면형 식물바이오필터의 토양 수분 안정화 및 실내공기질 정화)

  • Lee, Chang Hee;Choi, Bom;Chun, Man Young
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.605-617
    • /
    • 2015
  • The ultimate goal of this research is to develop a botanical biofiltration system that combines a green interior, biofiltering, and automatic irrigation to purify indoor air pollutants according to indoor space and the size of biofilter. This study was performed to compare the stability of air flow characteristics and removal efficiency (RE) of fine dust within a wall-typed (vertical) botanical biofilter depending on humidifying cycle and to investigate RE of volatile organic compounds (VOCs) by the biofilter. The biofilter used in this experiment was designed as an integral form of water metering pump, water tank, blower, humidifier, and multi-level planting space in order to be suitable for indoor space utilization. As a result, relative humidity, air temperature, and soil moisture content (SMC) within the biofilter showed stable values regardless of three different humidifying cycles operated by the metering pump. In particular, SMCs were consistently maintained in the range of 27.1-29.7% during all humidifying cycles; moreover, a humidifying cycle of operating for 15 min and pausing for 45 min showed the best horizontal linear regression (y = 0.0008x + 29.09) on SMC ($29.0{\pm}0.2%$) during 120 hour. REs for number of fine dust (PM10) and ultra-fine dust (PM2.5) particles passed through the biofilter were in the range of 82.7-89.7% and 65.4-73.0%, respectively. RE for weight of PM10 passed through the biofilter was in the range of 58.1-78.9%, depending on humidifying cycle. REs of xylene, ethyl benzene, total VOCs (TVOCs), and toluene passed through the biofilter were in the range of 71.3-75.5%, while REs of benzene and formaldehyde (HCHO) passed through the biofilter were 39.7% and 44.9%, respectively. Hence, it was confirmed that the wall-typed botanical biofilter suitable for indoor plants was very effective for indoor air purification.

GOCI-II Based Low Sea Surface Salinity and Hourly Variation by Typhoon Hinnamnor (GOCI-II 기반 저염분수 산출과 태풍 힌남노에 의한 시간별 염분 변화)

  • So-Hyun Kim;Dae-Won Kim;Young-Heon Jo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1605-1613
    • /
    • 2023
  • The physical properties of the ocean interior are determined by temperature and salinity. To observe them, we rely on satellite observations for broad regions of oceans. However, the satellite for salinity measurement, Soil Moisture Active Passive (SMAP), has low temporal and spatial resolutions; thus, more is needed to resolve the fast-changing coastal environment. To overcome these limitations, the algorithm to use the Geostationary Ocean Color Imager-II (GOCI-II) of the Geo-Kompsat-2B (GK-2B) was developed as the inputs for a Multi-layer Perceptron Neural Network (MPNN). The result shows that coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (RRMSE) between GOCI-II based sea surface salinity (SSS) (GOCI-II SSS) and SMAP was 0.94, 0.58 psu, and 1.87%, respectively. Furthermore, the spatial variation of GOCI-II SSS was also very uniform, with over 0.8 of R2 and less than 1 psu of RMSE. In addition, GOCI-II SSS was also compared with SSS of Ieodo Ocean Research Station (I-ORS), suggesting that the result was slightly low, which was further analyzed for the following reasons. We further illustrated the valuable information of high spatial and temporal variation of GOCI-II SSS to analyze SSS variation by the 11th typhoon, Hinnamnor, in 2022. We used the mean and standard deviation (STD) of one day of GOCI-II SSS, revealing the high spatial and temporal changes. Thus, this study will shed light on the research for monitoring the highly changing marine environment.

Analysis of Heterogeneous Tree-Ring Growths of Pinus densiflora with Various Topographical Characteristics in Mt. Worak Using GIS (GIS 기법을 이용한 지형적 특성에 따른 월악산 소나무 연륜생장의 이질성 규명)

  • 서정욱;김재수;박원규
    • The Korean Journal of Ecology
    • /
    • v.23 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • To analyze the relationship between climatic factors (monthly temperatures and precipitations) and the radial growths or Pinus densiflora with different topographical settings in Worak National Park, Korea, 20 stands were chosen and 10 trees were selected from each stand. After crossdating, each ring-width series was double detrended (standardized) by fitting first a negative exponential or straight regression line and secondly a 60-year cubic spline. The growth patterns coud be categorized by four groups using cluster analysis. Cluster Ⅰ stand has north aspect, but others have south or southwest aspects. Cluster Ⅰ (one), cluster Ⅱ (ten), and cluster Ⅲ (two) stands are located in lower. elevation (305∼580 m), however, cluster Ⅳ (seven) stands are located in higher elevation, mostly in 560~870 m. Cluster Ⅱ and Ⅲ stands are located at similar elevation with the same aspect, however, cluster Ⅱ stands are located on more rocky and stiff slope with shallow soil depth. The response functions were used to examine the difference in the relationships between climatic factors and tree growths among the 4 cluster chronologies. The climatic factors are not limiting the growth in the cluster Ⅰ stand as highly as in other cluster plots because of rather mesic conditions in the north slope. The precipitation in the spring appears to be the main limiting factor in the cluster Ⅱ stands. The topographical characteristics of the sites of cluster Ⅱ, shallow soil depths on the rocky slope in the south aspect at lower elevation, may enhance the sensitivity of growth to moisture stress. In cluster Ⅲ and cluster Ⅳ, winter and spring temperature prior to the growth become more important than for cluster Ⅱ. This pattern is com-mon for Pinus densiflora trees growing in higher. elevation (equation omitted 800 m) in South Korea. It nay be re-lated with preconditioning effects of temperature as the temperature decreases with increasing elevation (cluster Ⅳ) or in the valley (cluster Ⅲ). The results obtained by tree-ring analysis were digitalized by GIS and spatio-temporal information on tree-ring data and topographic setting were analyzed and displayed simultaneously. The results of this study can be used to predict the future change of Pinus densiflora ecosystem to climate change expected in central Korea.

  • PDF

Validation of Satellite SMAP Sea Surface Salinity using Ieodo Ocean Research Station Data (이어도 해양과학기지 자료를 활용한 SMAP 인공위성 염분 검증)

  • Park, Jae-Jin;Park, Kyung-Ae;Kim, Hee-Young;Lee, Eunil;Byun, Do-Seong;Jeong, Kwang-Yeong
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.469-477
    • /
    • 2020
  • Salinity is not only an important variable that determines the density of the ocean but also one of the main parameters representing the global water cycle. Ocean salinity observations have been mainly conducted using ships, Argo floats, and buoys. Since the first satellite salinity was launched in 2009, it is also possible to observe sea surface salinity in the global ocean using satellite salinity data. However, the satellite salinity data contain various errors, it is necessary to validate its accuracy before applying it as research data. In this study, the salinity accuracy between the Soil Moisture Active Passive (SMAP) satellite salinity data and the in-situ salinity data provided by the Ieodo ocean research station was evaluated, and the error characteristics were analyzed from April 2015 to August 2020. As a result, a total of 314 match-up points were produced, and the root mean square error (RMSE) and mean bias of salinity were 1.79 and 0.91 psu, respectively. Overall, the satellite salinity was overestimated compare to the in-situ salinity. Satellite salinity is dependent on various marine environmental factors such as season, sea surface temperature (SST), and wind speed. In summer, the difference between the satellite salinity and the in-situ salinity was less than 0.18 psu. This means that the accuracy of satellite salinity increases at high SST rather than at low SST. This accuracy was affected by the sensitivity of the sensor. Likewise, the error was reduced at wind speeds greater than 5 m s-1. This study suggests that satellite-derived salinity data should be used in coastal areas for limited use by checking if they are suitable for specific research purposes.

Studies on the grassland Development in the Forest IV. Possibility of the grassland improvement by spring sowing and microenvironmental conditions in the forest (임간초지 개발에 관한 연구 IV. 임간지에서 춘파초지개량 가능성과 주요 미기상 조사)

  • Park, M.S.;Han, Y.C.;Seo, S.;Lee, B.S.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.6 no.1
    • /
    • pp.31-37
    • /
    • 1986
  • In order to study the possibility of grassland improvement by spring sowing in the forest, microenvironmental conditions, emergence, percentage of grasses and weeds, root weight and dry matter yield of grasses were investigated. Two field sites (forest grassland and full-sunlight grassland) and two sowing times (March 20 and April 10) were assigned. The condition of the forest grassland was area of pine trees with 50% shading, and the experiment was performed at the Livestock Experiment Station in Suweon, 1984. The results obtained are summarized as follows: 1. For germination and early growth of grasses, full-sunlight grassland was more advantageous than forest grassland. Growth after that stage, on the other hand, forest grassland was more suitable. Especially, during dry and high temperature season, temperature of soil surface and underground in the forest grassland were decreased by $6-7^{\circ}C$ and $3-4^{\circ}C$ each other, compared with those of the full-sunlight grassland. Also soil moisture content was continuously higher in the forest grassland. 2. At March 20 sowing the emergence time in the full-sunlight grassland was shortened by 8 days, compared with that of the forest grassland. In case of sowing on April 10, however, there was no difference between two grassland sites. 3. Grasses grown in the forest was more prostrate and leaves from them decayed more, compared with those of the full-sunlight grassland. 4. The percentage of grasses in the forest grassland was 80 to 85 %, on the other hand, that of the full-sunlight grassland was only 15 to 20 %. And the percentage of grasses tended to be high in the plot of early sowing time. 5. Dry root weight and root length of grasses grown in the forest were inferior to those of the full-sunlight grassland (P<0.05), but there was no significant difference between two sowing times. 6. Dry matter yield of grasses was significantly higher (P<0.05) in the forest grassland than in the full-sunlight grassland, and yield was influenced by sowing time. Higher yield (4,011 kg/ha) was produced in the plot of the forest grassland with early spring sowing. 7. From above results, it is suggested that grassland improvement by spring sowing in the forest is possible, and it is desirable to sow in early spring.

  • PDF