• Title/Summary/Keyword: soil temperature and moisture

검색결과 514건 처리시간 0.023초

SIMULATION OF SOIL MOISTURE VARIABILITY DUE TO CLIMATE ORANGE IN NORTHEAST POND RIVER WATERSHED, NEWFOUNDLAND, CANADA

  • A. Ghosh Bobba;Vijay P. Singh
    • Water Engineering Research
    • /
    • 제4권1호
    • /
    • pp.31-43
    • /
    • 2003
  • The impacts of climate change on soil moisture in sub - Arctic watershed simulated by using the hydrologic model. A range of arbitrary changes in temperature and precipitation are applied to the runoff model to study the sensitivity of soil moisture due to potential changes in precipitation and temperature. The sensitivity analysis indicates that changes in precipitation are always amplified in soil moisture with the amplification factor for flow. The change in precipitation has effect on the soil moisture in the catchment. The percentage change in soil moisture levels can be greater than the percentage change in precipitation. Compared to precipitation, temperature increases or decreases alone have impacts on the soil moisture. These results show the potential for climate change to bring about soil moisture that may require a significant planning response. They are also indicative of the fact that hydrological impacts affecting water supply may be important in consider-ing the cost and benefits of potential climate change.

  • PDF

Approximate estimation of soil moisture from NDVI and Land Surface Temperature over Andong region, Korea

  • Kim, Hyunji;Ryu, Jae-Hyun;Seo, Min Ji;Lee, Chang Suk;Han, Kyung-Soo
    • 대한원격탐사학회지
    • /
    • 제30권3호
    • /
    • pp.375-381
    • /
    • 2014
  • Soil moisture is an essential satellite-driven variable for understanding hydrologic, pedologic and geomorphic processes. The European Space Agency (ESA) has endorsed soil moisture as one of Climate Change Initiates (CCI) and had merged multi-satellites over 30 years. The $0.25^{\circ}$ coarse resolution soil moisture satellite data showed correlations with variables of a water stress index, Temperature-Vegetation Dryness Index (TVDI), from a stepwise regression analysis. The ancillary data from TVDI, Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) from MODIS were inputted to a multi-regression analysis for estimating the surface soil moisture. The estimated soil moisture was validated with in-situ soil moisture data from April, 2012 to March, 2013 at Andong observation sites in South Korea. The soil moisture estimated using satellite-based LST and NDVI showed a good agreement with the observed ground data that this approach is plausible to define spatial distribution of surface soil moisture.

MODIS 이미지를 이용한 지표특성에 따른 토양수분의 시·공간적 분포 특성 (Characteristics of Soil Moisture Distributions at the Spatio-Temporal Scales Based on the Land Surface Features Using MODIS Images)

  • 김상우;신용철;이태화;이상호;최경숙;박윤식;임경재;김종건
    • 한국농공학회논문집
    • /
    • 제59권6호
    • /
    • pp.29-37
    • /
    • 2017
  • In this study, we analyzed the impacts of land surface characteristics on spatially and temporally distributed soil moisture values at the Yongdam and Soyang-river dam watersheds in 2014 and 2015. The soil moisture, NDVI (Normalized Difference Vegetation Index) and temperature values at the spatio-temporal scales were estimated using satellite-based MODIS (MODerate Resolution Imaging Spectroradiometer) products. Then the Pearson correlations between soil moisture and land surface characteristics (NDVI, temperature and DEM-digital elevation model) were estimated and analyzed, respectively. Overall, the monthly soil moisture values at the time step were highly influenced by the precipitation amounts. Also, the results showed that the soil moisture has the strong correlation with DEM while the temperature was inversely correlated with the soil moisture. However the monthly correlations between NDVI and soil moisture were highly varied along the time step. These findings indicated that water loss near the land surface are highly occurred by soil and plant activities as evapotranspiration and infiltration during the no/less precipitation period. But the high precipitation amounts reduce the impacts of land surface characteristics because of saturated condition of land surface. Thus these results demonstrated that soil moisture values are highly correlated with land surface characteristics. Our findings can be useful for water resources/environmental management, agricultural drought, etc.

토양 수분, 온도, 특성이 imazamethabenz 분해에 미치는 영향 (Effects of Moisture, Temperature, and Characteristics of two Soils on Imazamethabenz Degradation)

  • 주진호
    • 한국토양비료학회지
    • /
    • 제34권4호
    • /
    • pp.245-254
    • /
    • 2001
  • Imazamethabenz 분해에 미치는 토양수분, 온도와 토양특성에 관한 연구를 위하여 두 토양 (1.5% 유기물 함량과 pH 8.0인 Declo sandy loam 토양과 2.1% 유기물 함량과 pH 7.7인 Pancheri silt loam인 토양)이 사용되었다. 토양은 12 주간 조절된 조건 하에서 incubation되었다. 처리는 3개의 토양 수분 (45, 75, 100% field capacity)과 2개의 토양온도로서 factorial arrangement되었다. Imazamethabenz의 분해는 모든 토양수분-토양온도에서 대수직선관계를 나타냈으며, 토양온도와 토양 수분이 증가함에 비례하여 증가되는 경향을 보였다. 토양수분 효과는 토양 수분이 45에서 75%의 field capacity로 증가하였을 때가 75에서 100% 증가한 경우에 비해 더욱 크게 나타났으며, imazamethabenz의 분해는 Pancheri silt loam에서 더욱 빨리 일어났다. X-ray diffraction의 분석에 의하면 Pancheri silt loam 토양은 점토에 hydroxy interlayer를 함유하고 있어, 즉, 보다 적은 양의 imazamethabenz를 흡착할 수 있기 때문에 분해가 빨리 일어난 것이라 생각된다. Imazamethabenz로부터의 첫 번째 생성물인 imazamethabenz acid의 생성은 대부분의 토양수분-토양 온도에서 2차 방정식의 경향을 따랐는데, 초기에는 증가한 후 점치 감소하였다.

  • PDF

Possibility of Climate Change and Simulation of Soil Moisture Content on Mt. Hallasan National Park, Chejudo Island, Korea

  • Kim, Eun-Shik;Kim, Young-Sun
    • The Korean Journal of Ecology
    • /
    • 제23권2호
    • /
    • pp.117-123
    • /
    • 2000
  • Changing patterns and the possibility of climate change in the area of Cheiudo island, the southernmost Island in Korea, were analyzed using daily temperature and Precipitation data observed at the Cheiu Regional Meteorological Office from May 1923 to December 1998. A hydrologic simulation model "BROOK" was used to simulate and analyze the dynamics of daily soil moisture content and soil moisture deficit by applying the daily weather data. During the period, significantly increasing pattern was observed in temperature data of both annual and monthly basis, while no significantly changing pattern was observed in precipitation data. During the last 76 years. mean annual temperature was observed to have risen about 1.4$^{\circ}C$, which may show the Possibility of the initiation of climate change on the island whose validity should be tested in future studies after long-term studies on temperature. Based on the simulation, due to increased temperature, significant increase was predicted in evapotranspiration. while no significant decrease was detected in simulated soil moisture content during the period. Changing pattern of annual soil moisture content was markedly different from those of precipitation. In some dominant trees, negative effects of the drought of the late season for the previous year were shown to be statistically significant to radial growth of the tree for the current year. As annual variation of radial growth of trees is mainly affected by the soil moisture content. the information on the dynamics of soil moisture deficit possibly provides us with useful information for the interpretation of tree growth decline on the mountain. mountain.

  • PDF

Study on failure and subsidence law of frozen soil layer in coal mine influenced by physical conditions

  • Zhang, Yaning;Cheng, Zhanbo;Lv, Huayong
    • Geomechanics and Engineering
    • /
    • 제18권1호
    • /
    • pp.97-109
    • /
    • 2019
  • Physical conditions play vital role on the mechanical properties of frozen soil, especially for the temperature and moisture content of frozen soil. Subsequently, they influence the subsidence and stress law of permafrost layer. Taking Jiangcang No. 1 Coal Mine as engineering background, combined with laboratory experiment, field measurements and empirical formula to obtain the mechanical parameters of frozen soil, the thick plate mechanical model of permafrost was established to evaluate the safety of permafrost roof. At the same time, $FLAC^{3D}$ was used to study the influence of temperature and moisture content on the deformation and stress law of frozen soil layer. The results show that the failure tensile stress of frozen soil is larger than the maximum tensile stress of permafrost roof occurring in the process of mining. It indicates that the permafrost roof cannot collapse under the conditions of moisture content in the range from 20% to 27% as well as temperature in the range from $-35^{\circ}C$ to $-15^{\circ}C$. Moreover, the maximum subsidence of the upper and lower boundary of the overlying permafrost layer decreases with the increase of moisture content in the range of 15% to 27% or the decrease of temperature in the range of $-35^{\circ}C$ to $-15^{\circ}C$ if the temperature or moisture content keeps consistent with $-25^{\circ}C$ or 20%, respectively.

배추무사마귀병 뿌리혹의 형성에 미치는 온도, 토양수분, 토양 pH, 광의 영향 (Effects of Temperature, Soil Moisture, Soil pH and Light on Root Gall Development of Chinese Cabbage by Plasmodiophora brassicae)

  • 김충회
    • 식물병과 농업
    • /
    • 제5권2호
    • /
    • pp.84-89
    • /
    • 1999
  • Development of root galls of clubroot disease on Chinese cabbage seedlings was first observed 17days after inoculation of Plasmodiophora brassicae at $25^{\circ}C$ 4-11days earlier than at 5, 20, 3$0^{\circ}C$ and 35$^{\circ}C$. Subsequent enlargement of root galls was also fastest at $25^{\circ}C$ and 2$0^{\circ}C$ but delayed at 15$^{\circ}C$ and 3$0^{\circ}C$ or above. Chinese cabbage seedlings with root gall formation showed reduction in number of leaves above ground fresh weight and amount of root hairs but increase in root weight, Root galls development was highest at soil moisture level of 80% of maximum soil moisture capacity than at 60% and 100%. Optimum soil pH for root gall development was pH 6 although root galls were formed at a range of pH 5 to 8. Period of light illumination also affected root gall development with the greatest gall development at 12hr/12hr in light/dark period and the least at 8hr/16hr. Site of root gall formation and gall shape did not differ greatly among treatments of temperature soil moisture pH and light experiments.

  • PDF

다중선형 회귀모형과 천리안 지면온도를 활용한 토양수분 산정 연구 (Estimation of Soil Moisture Using Multiple Linear Regression Model and COMS Land Surface Temperature Data)

  • 이용관;정충길;조영현;김성준
    • 한국농공학회논문집
    • /
    • 제59권1호
    • /
    • pp.11-20
    • /
    • 2017
  • This study is to estimate the spatial soil moisture using multiple linear regression model (MLRM) and 15 minutes interval Land Surface Temperature (LST) data of Communication, Ocean and Meteorological Satellite (COMS). For the modeling, the input data of COMS LST, Terra MODIS Normalized Difference Vegetation Index (NDVI), daily rainfall and sunshine hour were considered and prepared. Using the observed soil moisture data at 9 stations of Automated Agriculture Observing System (AAOS) from January 2013 to May 2015, the MLRMs were developed by twelve scenarios of input components combination. The model results showed that the correlation between observed and modelled soil moisture increased when using antecedent rainfalls before the soil moisture simulation day. In addition, the correlation increased more when the model coefficients were evaluated by seasonal base. This was from the reverse correlation between MODIS NDVI and soil moisture in spring and autumn season.

디젤오염토양 마이크로파 처리 시 TPH의 제거 특성 (The Characteristics of TPH Removals by Microwave Radiation for Diesel Contaminated Soil)

  • 정승우;이태진
    • 대한환경공학회지
    • /
    • 제35권11호
    • /
    • pp.776-780
    • /
    • 2013
  • 본 연구에서는 마이크로파 조사를 통하여 디젤오염토양의 TPH (Total Petroleum Hydrocarbon) 제거양상을 살펴보고자 하였다. 건조토양을 마이크로파로 조사하였을 때 토양 내 온도의 상승은 완만하였으나 수분이 공급된 상태에서 온도 상승이 급격하게 나타났다. 함수량이 20% 이내 범위에서는 수분함량이 증가할수록 온도가 상승하였으나 20% 이상에서는 오히려 온도가 저하되었다. 100~700 W의 전력량으로 마이크로파를 조사한 후 각각의 TPH의 제거량을 확인하였을 때 300 W 이상의 범위에서는 전력량이 높아짐에도 TPH 제거량에 차이가 많지 않았다. 초기 수분량 20%에서 마이크로 조사 시 최종 TPH 제거량은 60%로 나타났으나 추가적으로 수분을 공급하여 토양 내 함수량을 일정하게 유지하였을 때 약 25%의 TPH 제거 증대효과가 나타났다. 이는 마이크로파를 이용할 때 반응이 지속됨에 따라 수분손실과 더불어 온도가 감소하므로 토양 내 함수량을 유지하는 것이 효율적인 TPH제거를 위해 중요한 요인이 될 수 있다는 것을 나타낸다.

원격 측정 기법을 이용한 토양 함수비의 측정 (Soil Moisture Content Estimation Using Remote Sensing Technique)

  • 이재수
    • 대한토목학회논문집
    • /
    • 제14권3호
    • /
    • pp.535-542
    • /
    • 1994
  • 원격 측정 방법은 지표로부터 방출된 방사선의 관측으로부터 지표면의 특성을 추정하는데 기초를 두고 있으며 이 방법을 사용하여 연구되어지는 수문학적 인자에는 지표면 온도, 증발산, 토양 함수비, 강우 그리고 강설 등이 있다. 본 연구에서는 관측된 광명온도와 모의된 광명온도로부터 피복이 안된 토양의 함수비 산정에 대한 방법을 소개한다. 피복이 안된 토양에서의 초단파 방출은 함수비, 토양의 온도와 표면 조도에 의존하게 된다. 이 방법은 표면 조도의 영향을 고려하기 위한 Fresnel 반사 계수의 수정과 함께 방사선 전달 모델(radiative transfer model)에 기본을 두고 있는데 피복이 안된 매끈한 표면과 서로 다른 표면 조도를 가진 표면에 대해 분석을 실시한다. 연구의 결과는 표면 조도의 영향이 토양의 광명온도를 증가시키고 광명온도와 함수비 사이의 감소경사를 작게함을 보여주고 있다.

  • PDF