• Title/Summary/Keyword: soil suction

Search Result 278, Processing Time 0.024 seconds

Uplift Capacity of a Plate Anchor Considering Suction Effects

  • Seo, Young-Kyo;Kim, Tae-Hyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.1-6
    • /
    • 2008
  • Anchors have been commonly used to as foundation systems of the structures that require the uplift resistance. Recently anchors have been used in ocean sediment for mooring systems to stabilizeoffshore structures. In the saturated clayey soil however suction developed between the soil and andchor and affects the uplift capacity of anchor. To estimate the uplift capacity of the andchor accurately, the failure mechanisms of the andchor by the uplift force should also be correctly assumed. The uplift capacity is usually expressed in terms of breakout factors with respect to embedment ratio. In this paper, a two-dimensional plane strain numerical investigation into the vertical uplift capacity of a plate andchor in a clayey soil is described. The breakout factor against their corresponding values of embedment ratio was calculated and plotted along a single curve. The modes of failure mechanism at shallow and deep andchors are also presented.

Reproduction of Cyclic Triaxial Behavior of Unsaturated Soil using Element Simulation (요소 시뮬레이션에 의한 불포화토의 반복삼축거동 재현)

  • Lee, Chungwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.10
    • /
    • pp.5-14
    • /
    • 2015
  • Suction affects the unsaturated soil as the negative pore pressure, and leads to increases of the yield stress and the plastic shear stiffness of the soil skeleton due to the growth in interparticle stress. Hence, in this study, in order to account for these effects of suction under the dynamic loading condition such as the earthquake, the element simulation of the cyclic triaxial test using induced stress-strain relation based on cyclic elasto-plastic constitutive model extended for unsaturated soil considering the $1^{st}$ and the $2^{nd}$ yield functions was conducted. Through the stress path, stress-strain relation and relation between volumetric strain and axial strain, it was seen in all the cases that the simulation results demonstrated a good agreement with the experimental results. It is expected that the results of this study possibly contribute to the accuracy improvement on the prediction of unsaturated soil behavior under the dynamic loading condition.

Seismic Behaviors of Concrete-Suction-Type Offshore Wind Turbine Supporting Structures Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 콘크리트 석션식 해상풍력 지지구조물의 지진거동 특성)

  • Lee, Jin Ho;Jin, Byeong-Moo;Bae, Kyung-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.319-327
    • /
    • 2017
  • In this study, characteristics of seismic behaviors of offshore wind turbine systems using concrete-suction-type supporting structures are investigated. Applying hydrodynamic pressure from the surrounding sea water and interaction forces from the underlying soil to the structural system which is composed of RNA, the tower, and the supporting structure, a governing equation of the system is derived and its earthquake responses are obtained. It can be observed from the analysis results that the responses are significantly influenced by soil-structure interaction because dynamic responses for higher natural vibration modes are increased due to the flexibility of soil. Therefore, the soil-structure interaction must be taken into consideration for accurate assessment of dynamic behaviors of offshore wind turbine systems using concrete-suction-type supporting structures.

Effect of Hysteresis on Soil-Water Characteristic Curve in Weathered Granite and Gneiss Soil Slopes during Rainfall Infiltration (풍화계열 사면의 불포화 함수특성곡선 이력이 강우 침투에 미치는 영향)

  • Shin, Gil-Ho;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.55-64
    • /
    • 2006
  • Shallow failures of slopes in weathered soils are caused by infiltration caused by prolonged rainfall. These failures are mainly triggered by the deepening of the wetting band accompanied by a decrease in suction induced by the water infiltration. In this paper, hysteresis on soil-water characteristic curve (SWCC) of granite and gneiss weathered soils is investigated using transient flow analysis respectively. Each case was subjected to artificial rainfall intensities and time duration depending on the laboratory-based drying and wetting processes. The results show that the unsaturated seepage on weathered slopes are very much affected by the initial suction of soils and unsaturated permeability of the soils. In addition, a granite weathered soil has a lower air-entry value, residual matric suction, and wetting front suction and less hysteresis loop than a gneiss weathered soil.

Infiltration and Drainage Capacity of Unsaturated Soil-Aggregate Foundation System (조립질 지반재료로 이루어진 기초의 불포화 침투 및 배수성능 평가)

  • Sung, Yeoul-Jung;Park, Seong-Wan;Tae, Doo-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.966-972
    • /
    • 2009
  • Soil-aggregate system in pavement foundations exist in unsaturated conditions. However, change in water content on foundation layers due to joint and structural cracks during rainfall may cause problems like layer deformations or partial settlements. Therefore, a need exist to evaluate the infiltration and drainage capacity of soil-aggregate foundation system under both saturated and unsaturated conditions. To do that, a laboratory soil-water characteristic curve and permeability under unsaturated conditions are assessed to establish hydraulic properties of geomaterials and limited numerical analysis are performed respectively. As a result, it was found that suction profiles and drainage process was greatly influenced by the initial suction of soil-aggregate system at the time of infiltration, soil water characteristics curves, and hysteresis effects.

  • PDF

Analysis of cavity expansion and contraction in unsaturated residual soils

  • Lukosea, Alpha;Thiyyakkandi, Sudheesh
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.405-419
    • /
    • 2022
  • Cavity expansion and contraction solutions for cylindrical and spherical cavities in unsaturated residual soils are presented in this paper. Varying soil state in the plastic zone is accounted by a numerical approach, wherein an element-by-element discretization of the plastic zone of both expanding and contracting cavities is carried out. Unlike existing methods utilizing self-similarity technique, the solution procedure enables the prediction of entire soil-state at any stage of expansion and subsequent contraction. It is also applicable for both cavity creation and expansion problems. The approach adopts constant contribution of suction to effective stress (constant Xs drainage condition) for analysis. The analysis procedure is validated by interpreting the previously reported pressuremeter test results in lateritic residual soil. The typical cavity expansion and contraction characteristics of unsaturated Indian lateritic soil were then examined using this solution procedure. The effect of initial soil-state on cavity limit pressure, plastic radius, reverse yield pressure, and reverse plastic radius are also presented.

Liquefaction Behaviour and Prediction of Deviator Stress for Unsaturated Silty Sand

  • Lee, Dal-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.7
    • /
    • pp.35-43
    • /
    • 2006
  • This study was carried out to investigate the liquefaction behaviour and predict deviator stress with matric suction, of unsaturated silty sand. The unsaturated soil tests were conducted using a modified triaxial cell and specimens were prepared using the moisture tamping method. The axis translation technique was used to create the desired matric suctions in the specimen. Undrained triaxial compression tests were carried out at matric suction of 0, 2, 5, 10 and 25 kPa. The specimens were sheared to axial strains of about 20% to obtain steady state conditions. The results showed that liquefaction of silty sand only occurs at matric suction of 0 kPa and 2 kPa. The results also show that at matric suctions of 5, 10 and 25 kPa, the resistance to liquefaction increases. As the suction increases, the undrained effective stress path approached the drained stress path. Also, the predicted and measured maximum deviator stress for unsaturated soils using the effective stress concept showed good agreement as matric suction increases. The deviator stress increase is nonlinear as matric suction increases.

Numerical Study of Unsaturated Infinite Slope Stability regarding Suction Stress under Rainfall-induced Infiltration Conditions

  • Song, Young-Suk;Hwang, Woong-Ki
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Numerical stability analysis of an unsaturated infinite slope under rainfall-induced infiltration conditions was performed using generalized effective stress to unify both saturated and unsaturated conditions The soil-water characteristic curve (SWCC) of sand with a relative density of 75% was initially measured for both drying and wetting processes. The hydraulic conductivity function (HCF) and suction stress characteristic curve (SSCC) were subsequently estimated. Under the rainfall-induced infiltration conditions, transient seepage analysis of an unsaturated infinite slope was performed using the finite element analysis program, SEEP/W. Based on these results, the stability of an unsaturated infinite slope under rainfall-induced infiltration conditions was examined in relation to suction stress. According to the results, the negative pore-water pressure and water content within the slope soil changed over time due to the infiltration. In addition, the variation of the negative pore-water pressure and water content led to a variation in suction stress and a subsequent change in the slope's factor of safety during the rainfall period.

Bearing capacity of strip footings on unsaturated soils under combined loading using LEM

  • Afsharpour, Siavash;Payan, Meghdad;Chenari, Reza Jamshidi;Ahmadi, Hadi;Fathipour, Hessam
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.223-235
    • /
    • 2022
  • Bearing capacity of shallow foundations is often determined for either dry or saturated soils. In some occasions, foundations may be subjected to external loading which is inclined and/or eccentric. In this study, the ultimate bearing capacity of shallow foundations resting on partially saturated coarse-grained cohesionless and fine-grained cohesive soils subjected to a wide range of combined vertical (V) - horizontal (H) - moment (M) loadings is rigorously evaluated using the well-established limit equilibrium method. The unified effective stress approach as well as the suction stress concept is effectively adopted so as to simulate the behaviour of the underlying unsaturated soil medium. In order to obtain the bearing capacity, four equilibrium equations are solved by adopting Coulomb failure mechanism and Bishop effective stress concept and also considering a linear variation of the induced matric suction beneath the foundation. The general failure loci of the shallow foundations resting on unsaturated soils at different hydraulic conditions are presented in V - H - M spaces. The results indicate that the matric suction has a marked influence on the bearing capacity of shallow foundations. In addition, the effect of induced suction on the ultimate bearing capacity of obliquely-loaded foundations is more pronounced than that of the eccentrically-loaded footings.

Investigation on the Penetration Resistance of Suction Bucket Foundation in Sand using Model Test (모형실험을 통한 모래지반에서 석션버켓기초의 관입저항력 평가)

  • Kim, Keunsoo;Kwon, Osoon;Oh, Myounghak;Jang, Insung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.6
    • /
    • pp.75-83
    • /
    • 2014
  • Suction bucket foundation is installed with the differential pressure created by pumping water out of bucket. Bucket foundation has usually been utilized in mooring anchor for offshore platform or floating oil and gas production facilities in the open sea. After suction bucket foundation successfully was applied as the foundation for offshore wind turbines in Europe, it recently attracts much attention in Korea, too. To estimate the penetration resistance of the suction bucket foundation is one of the important matters that should be considered during its installation. This study carried out a series of model tests to investigate the penetration resistance of suction bucket foundation. And the mobilized soil strength factor was reviewed through comparing the experimental results by two installation ways (e.g., push-in-load and suction) and the results calculated by the conventional equation.