• Title/Summary/Keyword: soil strain

Search Result 1,969, Processing Time 0.034 seconds

Effect of Duration of Confinement and Its Affecting Factors on the Low-Amplitude Shear Modulus ($G_{max}$) of Soils (토질 최대전단탄성계수($G_{max}$)에 미치는 시간지속효과 및 그 영향요소에 관한 연구)

  • 박덕근
    • The Journal of Engineering Geology
    • /
    • v.9 no.2
    • /
    • pp.135-145
    • /
    • 1999
  • Dynamic Shear modulus (G) is one of the imfortant dynamic soil properties to estimate the response of soil to dynamic loading. Problems in engineering geo1ogy practice the require the knowledge of soil properties subjected to dynamic loadings include soil-structure interaction during earthquakes, bomb blasts, construction operations, and mining. Although the dynamic shear modulus (G) is a time-dependent property, G change with time is often neglected. In this study, the effect of duration of confinement and its affecting factors (previous stress and strain, particle size and sustained pressure, and plasticity index) on the low-amplitude shear modulus ($G_{max}$) of soils are reviewed, and some empirical correlations based on mean particle diameter and plasticity index are proposed.

  • PDF

Degradation of Phenanthrene by Bacterial Strains Isolated from Soil in Oil Refinery Fields in Korea

  • KIM JEONG DONG;SHIM SU HYEUN;LEE CHOUL GYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.337-345
    • /
    • 2005
  • The degradation of phenanthrene, a model PAH compound, by microorganisms either in the mixed culture or individual strain, isolated from oil-contaminated soil in oil refmery vicinity sites, was examined. The effects of pH, temperature, initial concentration of phenanthrene, and the addition of carbon sources on biodegradation potential were also investigated. Results showed that soil samples collected from four oil refinery sites in Korea had different degrees of PAH contamination and different indigenous phenanthrene-degrading microorganisms. The optimal conditions for phenanthrene biodegradation were determined to be 30$^{circ}C$ and pH 7.0. A significantly positive relationship was observed between the microbial growth and the rate of phenanthrene degradation. However, the phenanthrene biodegradation capability of the mixed culture was not related to the degree of PAH contamination in soil. In low phenanthrene concentration, the growth and biodegradation rates of the mixed cultures did not increase over those of the individual strain, especially IC10. High concentration of phenanthrene inhibited the growth of microbial strains and biodegradation of phenanthrene, but was less inhibitory on the mixed culture. Finally, when non-ionic surfactants such as Brij 30 and Brij 35 were present at the level above critical micelle concentrations (CMCs), phenanthrene degradation was completely inhibited and delayed by the addition of Triton X100 and Triton N101.

Dynamic behavior of clayey sand over a wide range using dynamic triaxial and resonant column tests

  • Guler, Ersin;Afacan, Kamil B.
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.105-113
    • /
    • 2021
  • Deformations in soils induced by dynamic loads cause damage to the structures above the soil layers. It is important for geotechnical engineering practice that how the soil behaves due to repeated loads and the necessary precautions to be taken accordingly. Turkey is one of the most important seismic regions in Europe and earthquake studies to be conducted in this area are intended to reduce the damage as a result of taking the necessary measures. To determine the properties of soils under dynamic loads, stress-controlled dynamic triaxial and resonant column tests can be performed. In this study, these experiments were implemented in the laboratory on the clayey sand soil samples obtained from Bilecik Söğüt. To evaluate the effects of the confining pressure and rate of loading on the dynamic behavior of soils, samples were dynamically loaded by different rates at varying confining pressures. As a result, the changes in stress-strain properties of soils under dynamic loads were investigated. The alteration in behavior in terms of modulus reduction and damping ratios was obtained to vary a lot with the change of the lateral pressure on soil along with the frequency of the load.

Ultimate lateral capacity of two dimensional plane strain rectangular pile in clay

  • Keawsawasvong, Suraparb;Ukritchon, Boonchai
    • Geomechanics and Engineering
    • /
    • v.11 no.2
    • /
    • pp.235-252
    • /
    • 2016
  • This paper presents a new numerical solution of the ultimate lateral capacity of rectangular piles in clay. The two-dimensional plane strain finite element was employed to determine the limit load of this problem. A rectangular pile is subjected to purely lateral loading along either its major or minor axes. Complete parametric studies were performed for two dimensionless variables including: (1) the aspect ratios of rectangular piles were studied in the full range from plates to square piles loaded along either their major or minor axes; and (2) the adhesion factors between the soil-pile interface were studied in the complete range from smooth surfaces to rough surfaces. It was found that the dimensionless load factor of rectangular piles showed a highly non-linear function with the aspect ratio of piles and a slightly non-linear function with the adhesion factor at the soil-pile interface. In addition, the dimensionless load factor of rectangular piles loaded along the major axis was significantly higher than that loaded along the minor axis until it converged to the same value at square piles. The solutions of finite element analyses were verified with the finite element limit analysis for selected cases. The empirical equation of the dimensionless load factor of rectangular piles was also proposed based on the data of finite element analysis. Because of the plane strain condition of the top view section, results can be only applied to the full-flow failure mechanism around the pile for the prediction of limiting pressure at the deeper length of a very long pile with full tension interface that does not allow any separation at soil-pile interfaces.

Dynamic Behavior of Decomposed Granite Soils (화강풍화토의 동적 거동)

  • 이종규
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.175-183
    • /
    • 1999
  • Recently, problems related to vibrations of decomposed granite soils have acquired increasing attention in Korea because those soils cover approximately one third of the country. Both resonant column and cyclic triaxial test were performed to investigate deformation characteristics of unsaturated and cement-mixed decomposed granite soils in Suwon region. The important soil parameters in this respect are the shear moduli, dynamic moduli of elasticity and damping ratios. The dynamic parameters are influenced by variables such as strain amplitude, ratio of loading cycles, and degree of saturations, etc. Test results and data have shown that the optimum degree of saturation to the maximum shear modulus due to a capillary menisci effect was about 17~18 % at low strain amplitude and 10~15 % at intermediate strain amplitude. This paper suggests the range of threshold strain and mean shear modulus of decomposed granite soils in Suwon region. It also proposed the empirical relationship between the dynamic parameters for cement-mixed and non-mixed decomposed granite soils.

  • PDF

The Determination of Required Tensile Strength of Geosynthetic Reinforcements for Embankment on Soft Ground (연약지반 보강성토에서 섬유보강재 소요인장강도의 결정)

  • 이광열;황재홍;구태곤
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.379-385
    • /
    • 2003
  • In the existing method to design geosynthetic reinforced embankment, the required strength of reinforcements is determined by vertical stress only rather than strain. This strength is not in accord with tensile strength that behaves as reinforcement in earth structures. The reinforcement and adjacent soil on the failure plan behave in one unit at the initial stress phase but they make a gap in strain as stress increases. This issue may cause a big impact as a critical factor on geosynthetic reinforcement design in earth structures. The quantitative analysis on strain behavior was performed with a PET Mat reinforced embankment on soft ground. From this study, several outstanding discussions are found that tensile strength of reinforcement governs the failure of embankment when the soil stress is greater than failure stress. Also the optimum required tensile strength of geosynthetic reinforcement(Tos) should be determined by stress, displacement, displacement gap and safety factor of soil-PET Mat at the location of PET Mat.

Hydroxyapatite Solubilization and Organic Acid Production by Enterobacter agglomerans (인산염 가용화균 Enterobacter agglomerans에 의한 Hydroxyapatite 가동화와 유기산 생성)

  • Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.2
    • /
    • pp.189-195
    • /
    • 1997
  • A phosphate solubilizing bacterium (PSB) possessing a high ability to solubilize hydroxyapatite (HA) was isolated from the rhizosphere of wheat. The PSB markedly developed clear zones after inoculating for 36 hours at $30^{\circ}C$. This bacterium was identified as Enterobacter agglomerans through API 20E system and Biolog$^{TM}$ analysis. The values of similarity and distance coefficient from authentication trial of the strain were 0.656 and 4.79 respectively. High performance liquid chromatography (HPLC) of the products of this strain indicated that this strain excretes maily oxalic acid with som other organic acids. During the incubation period of E. agglomerans, the pH values showed an inverse correlation ($r^2=0.933^{**}$) with solubilization of inorganic phosphate. Acid phosphatase activity of the strain was 10-15 times greater than alkaline phosphatase activity. Alkaline phosphatase activity had almost constant near zero activity across time. The population of E. agglomerans greatly increased during the first day of inoculation ; however, it drastically decreased thereafter.

  • PDF

Distribution and Isolation of Soil borne Wheat Mosaic Virus in Korea

  • Lee, Kui-Jae;Lim, Hyun-Suk;Kim, Hyung-Moo;Lee, Wang-Hyu
    • Plant Resources
    • /
    • v.4 no.1
    • /
    • pp.41-47
    • /
    • 2001
  • This study was conducted to investigate the occurrence of Soil borne wheat mosaic virus(SbWMV) in barley fields in Korea and to examine the host pathogenicity of SbWMV. By using the ELISA test, SbWMV was detected in the six regions : Suwon, Milyang, Jinju, Youngkwang, Iksan, and Chonju. SbWMV was isolated from the two strains, Albori strain from Jinju and Eunpamil strain from Milyang. SbWMV was collected from leaves showing mosaic, yellowing and necrosis stripes. SbWMV was inoculated mechanically on 1∼1.5 leaf stages with leaf-rubbing to identify the host pathogenicity of 36 Korean barley cultivars, a wheat cultivar, two rye cultivars, three Japanese barley cultivars and Chenopodium amaranticola. Viral sympoms of inoculated leaves appeared on moulted loaves about 4 to 6 weeks of inoculation. Baegdong and Tapgolbori, infected from Albori strain and Eunpamil strain infected from Samdobori showed much higher susceptibility than C. amaranticola and C. quinoa which showed ring spots and chlorotic spots respectively. Virus particles were observed by the electron microscope. They were rod-shapes, which are bipartite, of 142 nm or 281 nm in length with 20 nm diameter on infected leaves. Specific detection and identification of SbWMV was set up using the RT-PCR. PCR fragments of SbWMV(0.5kb) were obtained by using the designed primers for SbWMV RNA 2.

  • PDF

Description of Vishniacozyma terrae sp. nov. and Dioszegia terrae sp. nov., Two Novel Basidiomycetous Yeast Species Isolated from Soil in Korea

  • Soohyun Maeng;Yuna Park;Gi-Ho Sung;Hyang Burm Lee;Myung Kyum Kim;Sathiyaraj Srinivasan
    • Mycobiology
    • /
    • v.50 no.6
    • /
    • pp.439-447
    • /
    • 2022
  • Two strains, YP344 and YP579 were isolated from soil samples in Pocheon City, Gyeonggi Province, South Korea. The strains YP344 and YP579 belong to the genus Vishniacozyma and Dioszegia, respectively. The molecular phylogenetic analysis showed that the strain YP344 was closely related to Vishniacozyma peneaus. Strain YP344T differed by four nucleotide substitutions with no gap (0.70%) in the D1/D2 domain of the LSU rRNA gene and 16 nucleotide substitutions with 8 gaps (5.76%) in the ITS region. On the other hand, the strain YP579T varied from the type strain of the most closely related species, Dioszegia zsoltii var. zsoltii, by 6 nucleotide substitutions with four gaps (1.64%) in the D1/D2 domain of LSU rRNA gene and 26 nucleotide substitutions with 14 gaps (8.16%) in the ITS region. Therefore, the name Vishniacozyma terrae sp. nov. and Dioszegia terrae sp. nov. are proposed, with type strains YP344T (KCTC27988T) and YP579T (KCTC 27998T), respectively.

Identification of the $\alpha$-Amylase Inhibitor Producing Actinomycetes BY-445 ($\alpha$-아밀라제 저해물질을 생성하는 방선균 BY-445의 동정)

  • 박병호
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.5
    • /
    • pp.565-569
    • /
    • 1998
  • The strain BY-445 which produces new inhihitors of ${\alpha}$-amylase was isolated from a soil sample and identified. The aerial hyphae of this strain develope in the from of open spirals. The spore chain of BY-445 strain appears in spiral shape with spiny surface. Melanoid and soulble pigments were not observed. Gelatin was liquefied, and skin milk and starch was also hydrolyzed. The isolate contained LL-diaminopimelic acid in its cell wall hydrolysate. The content of fatty acid 16:iso, 15:0 anteiso and 16:0 was 25:30, 16.19 and 13.16%, respectively. BY-445 strain was closely related to Streptomyces violaceusinger but it was different from this strain in some cultural and physiological characteristics. This strain was, therefore, designated as Streptomyces sp. BY 445.

  • PDF