• Title/Summary/Keyword: soil strain

Search Result 1,969, Processing Time 0.03 seconds

Productivity test on some screened strains of Gibberella fujikuroi(Saw.) (Gibberellin 산류 생산균주의 분리와 생산성검토)

  • Lim, S.U.;Lee, C.Y.
    • Applied Biological Chemistry
    • /
    • v.14 no.2
    • /
    • pp.171-175
    • /
    • 1971
  • Gibberella fujikuroi(imperfect stage Fusarium moniforme) a soil fungi is well known as the producer of plant growth regulator Gibberellins. The present work was planned for the isolation of the active strains of Gibberella fujikuroi from the native paddy soils. Twenty two strains were isolated from the infected rice seedlings collected from four local areas. Pyongtaek, Yesan, Tangjin and Sunchon and screened through the activity test for the production of Gibberellins. The strains P-105, Y-14 and T-58 yielded higher activity than the others isolated and the referred strain IAM-8048. The strains Y-5, Y-7, T-54 and S-152, however, were less promotive or rather inhibitory in the growth of rice seedlings. Six different kinds of culture media developed by Cross, Raulin-Thom, Borrow, West, Stodola and Kurosawa respectively were compared with each other for the production of Gibberellins and the best result was obtained with Raulin-Thom's media(glucose 16% and $NH_4NO_3$ 0.24%).

  • PDF

Isolation and Antifungal Activity of the Chitinase Producing Bacterium Serratia sp. 3095 as Antagonistic Bacterium against Fusarium sp. (Chitinase를 생산하는 길항미생물 Serratia sp. 3095의 선발과 Fusarium 속에 대한 항진균성)

  • Lee, Eun-Tag;Kim, Sang-Dal
    • Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.181-187
    • /
    • 1999
  • For the selection of an effective antagonistic biocontrol agent, we have isolated an antagonistic bacterium which produced extracellular chitinase, from a local soil of Kyongju, Korea. The selected strain was identified as Serratia proteamaculans 3095. The chitinase produced from Serratia sp. 3095 showed antifungal activity which can attack the hypha surface of Fusarium oxysporum and F. solani. The carbon and nitrogen sources for chitinase production were 0.15% colloidal chitin and 0.1% ammonium sulfate, respectively. Glucose in the chitinase production medium might inhibit the production of chitinase by feed back repression. The antagonistic Serratia sp. 3095 also showed a powerful biocontrol activity against F. oxysporum through in vitro test and in vivo pot test.

  • PDF

Insecticidal Activity of Metarhizium anisopliae FT83 against the Different Stages of Beet Armyworm, Spodoptera exigua (곤충병원성 곰팡이 Metarhizium anisopliae FT83의 파밤나방 생육단계별 살충활성)

  • Han, Ji Hee;Kim, Jeong Jun;Lee, SangYeob
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.417-421
    • /
    • 2014
  • The beet armyworm, Spodoptera exigua is pest which is difficult to control. For eco-friendly beet armyworm managements, we isolated entomopathogenic fungi from soil samples by insect-bait method using Tenebrio molitor and conducted bioassay to larvae of beet armyworm. The result of bioassay, a selected strain Metarhizium anisopliae FT83 caused 100% mortality against first ~ third instar larva of S. exigua at $1{\times}10^8conidia/ml$ and medial lethal time ($LT_{50}$) were 0.5 days, 2.6 days and 2.5 days respectively. Mortality against fourth and fifth larvae were $83.3{\pm}6.2%$ and $86.0{\pm}5.7%$ and medial lethal time ($LT_{50}$) were 4.2 days and 3.6 days respectively. Mortality against pupae and eggs of S. exigua were 100%. M. anisopliae FT83 showed high virulence at all developmental stages of S. exigua.

16S/23S Intergenic Spacer Region as a Genetic Marker for Thiobacillus thiooxidans and T.ferrooxidans

  • Lee, Hye-Won;Choi, Won-Young;Cho, Kyung-Suk;Choi, Won-Ja
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1046-1054
    • /
    • 2001
  • Bioleaching is the process in which insoluble metal sulfide is oxidized by specialized iron- and/or sulfur-oxidizing lithotrophic bacteria in acidic, metal-rich environments. Most of these processes are carried out by the genus Thiobacillus. Three novel Thiobacillus strains (Thiobacillus thiooxidans AZ11, Thiobacillus thiooxidans MET, and thiobacillus thiooxidans TAS) associated with bioleaching have been isolated from soil and sludge (Korean patent No. 1999-0073060 for T. thiooxidans AZ11, Korean patent No. 1999-0005798 for T. thiooxidans MET, and Korean patent No. 1999-0073059 for T. thiooxidans TAS). A partial sequence of 16S ribosomal RNA gene (16S rDNA) and the entire sequence of 16S/23S intergenic spacer region (ISR) were determined in the three above novel strains and in Thiobacillus ferrooxidans ATCC19859 as a reference strain. When phylogenetic analysis was performed based on G+C contents and sequence alignments, T. ferroxidans ATCC19859 was found to be closely related to previously registered T. ferrooxidans strains in a monophyletic manner, while the three novel T. thiooxidans strains were classified in a paraphyletic manner. Close examination on the base composition of 16S/23S ISR revealed that the 5\` part (nucleotide residues 21-200) was specific for the genus Thiobacillus. On the other end, the 3\` part (nucleotide residues 201-520) showed specificity in T. ferrooxidans strains, but not in T. thiooxidans strains. These results suggest that the proximal and distal halves of 16S/23S could be used as a genetic marker for the identification of the genus Thiobacillus and the species T. ferrooxidans, respectively.

  • PDF

Biotoxic Cyanobacterial Metabolites Exhibiting Pesticidal and Mosquito Larvicidal Activities

  • Kumar, Ashok;Dhananjaya P. , Singh;Tyagi, M.B.
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.50-56
    • /
    • 2003
  • A freshwater bloom-forming cyanobacterium, Microcystis aeruginosa, and local soil isolate Scytonema sp. strain BT 23 were demonstrated to contain biotoxic secondary metabolites with pesticidal and mosquito larvicidal activities. A purified toxic constituent from M aeruginosa showed an absorption maximum at 230 nm and its toxicity symptoms, Rf value on TLC, and retention time observed ill an HPLC analysis were similar to those of the hepatotoxic heptapeptide microcystin-LR. The bioactive constituent of the Scytonema sp. was less polar in nature and exhibited two peaks at 240 and 285 m. When applied to two cruciffrous pests, Pieris brassicae and Plutella flostella, the crude extracts and toxic principles from the two cyanobacteria showed significant antifeedant activity in a no-choice bioassay, and at higher concenuations exhibited contact toxicity to the insect larvae. The purified toxin from M. aeruginosa was found to be more effective and produced 97.5 and $92.8\%$ larval mortality in the two pests, fo11owing 2 h of toxin treatment at a concentration of $25{\mu}g$ Per leaf disc (2.5 cm dia.). Meanwhile, similar treatment with the purified toxin from Sytonema sp. stain BT 23 only produced 73 and $78\%$ mortality in the two pests. The cyanobacterial constituents also showed significant activity against Culex and Anopheles larvae. The M. aeruginosa toxin ($20{\mu}g\;ml^-1$) caused 98.2 and $88.1\%$ mortality in the Culex and Anopheles larvae, respectively, while the purified toxin from the Sytonema sp. was less toxic and only produced a 96.3 and $91.2\%$ mortality, respectively, at a much higher concentration ($40{\mu}g\;ml^-1$). Accordingly, the current results point to certain hitherto unknown biological properties of cyanobacterial biotoxins.

Characterization of a Tacky Poly(3-Hydroxyalkanoate) Produced by Pseudomonas chlororaphis HS21 from Palm Kernel Oil

  • YUN, HYE SUN;DO YOUNG KIM;CHUNG WOOK CHUNG;HYUNG WOO KIM;YOUNG KI YANG;YOUNG HA RHEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.64-69
    • /
    • 2003
  • Pseudomonas chlororaphis HS21 was isolated from a soil sample and found to produce medium-chain-length polyhydroxyalkanoates (MCL-PHAs) using palm kernel oil (PKO) as the sole carbon source. Up to 3.3 g/1 dry cell weight containing $45\%$ MCL-PHA was produced, when the strain was grown for 21 h in a jar fermentor culture containing 5 g/1 PKO. The polymer produced from PKO consisted of unsaturated monomers of $7.3\%$ 3-hydroxy-5-cis-tetradecenoate and $2.3\%$ 3-hydroxy-5,8,-cis, cis-tetradecadienoate as well as saturated even-carbon number monomers ranging from $C_6\;to\;C_14$, as determined by GC and El GC/MS The PHA was a transparent, sticky material at room temperature. A differential scanning calorimetric analysis revealed that the polymer was amorphous with a $-44^{\circ}C$ glass transition temperature. The number average molecular weight and polydispersity index of the PHA were 83,000 and 1.53, respectively. Although the PHA was practically biodegradable, its degradability was lower than that of poly(3-hydroxyoctanoate) based on a comp:trison of the clear zones formed by growing PHA depolymerase-producing bacteria on an agar plate containing the respective polymers.

$Pyoverdin_{2112}$ of Pseudomonas fluorescens 2112 Inhibits Phytophthora capsici, a Red-Pepper Blight-Causing Fungus

  • Kim, Sang-Dal;Lee, Eun-Tag;Lim, Si-Kyu;Nam, Doo-Hyun;Khang, Yong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.415-421
    • /
    • 2003
  • A bacterium, Pseudomonas fluorescens 2112, that is antagonistic against a red-pepper blight-causing fungus, Phytophthora capsici, was isolated from the local soil of Gyongju, Korea. This strain formed an orange-colored clear halo zone on chrome azurol S (CAS) blue agar, suggesting the production of a siderophore in addition to an antifungal antibiotic. The optimal culture conditions for siderophore production by P. fluorescens 2112 were 30-h cultivation at $25^{\circ}C$ and pH 6.5 in King's B medium. The presence of $20{\mu}g/ml\;of\;Fe^3+$ ion or EDDHA promoted the production of siderophore in King's B medium. The siderophore was purified from culture broth by CM-Sephadex C-25 and Sephadex G-25 column chromatographies. The UV spectra of the purified siderophore was the same as that of pyoverdins or pseudobactins. The molecular mass was 1,958 Da determined by FAB-rlass spectrometer, and the amino acid composition analysis showed that the purified siderophore consisted of glycine/threonine/serine/glutamic acid/alanine/lysine with the molar ratio of 3:2:1:1:1:1, DL-Threo-${\beta}$-hydroxyaspartic acid and $N^{\delta}$-hydroxyornithine, two of the essential constituents of pyoverdin, were also found. The purified siderophore pyoverdin showed strong in vitro and in vivo antagonistic activities against phytophthora blight-causing P. capsici. Especially in an in vivo pot test, the siderophore protected red-pepper Capsicum annum L. very well from the attack of P. capsici. These results indicated that the purified siderophore of P. fluorescens 2112 played a critical role in the biocontrol of the red-pepper blight disease, equivalent to treatment by P.fluorescens 2112 cells.

Shaking table test for analysis of seismic performance of cut and cover tunnel using EPS block as backfill material (개착식 터널의 뒤채움재로 EPS블럭의 내진 성능 평가를 위한 진동대 시험)

  • Kim, Nag-Young;Lee, Yong-Jun;Lee, Seung-Ho;Chung, Hyung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.4
    • /
    • pp.333-342
    • /
    • 2002
  • World widely, the occurrences of earthquakes have been increased recently. Speculating from cases of earthquakes in the world, it is reported that damages have been made underground structures like cut-and-cover tunnels, especially on the upper of tunnel with a shallow depth and the backfilled area adjacently by earthquakes. Earthquakes have a tendency to increase recently in Korea but it is deficient in seismic design criteria. In this study, Shaking table test on both soil and EPS blocks was performed to analyze the efficiency of the seismic performance of the cut-and-cover tunnels according to characteristic of backfill materials and embanking material. It turned out to be effective in improving the seismic performance according to analysis of strain and bending stress of tunnel by earthquakes.

  • PDF

Identification of Stenotrophomonas maltophilia LK-24 and its Degradability of Crystal Violet

  • Kim, Jeong-Dong;Yoon, Jung-Hoon;Park, Yong-Ha;Fusako Kawai;Kim, Hyun-Tae;Lee, Dae-Weon;Kang, Kook-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.437-443
    • /
    • 2002
  • A number of soil and wastewater samples were collected from the vicinity of an effluent treatment plant for the chemical industry. Several microorganisms were screened fur their ability to decolorize the triphenylmethane group of dyes. As a result, a novel crystal violet dye-degrading strain LK-24 was isolated. Taxonomic identification including 16S rDNA sequencing and phylogenetic analysis indicated that the isolate had a $99.5\%$ homology in its 16S rDNA base sequence with Stenotrophomonas maltophilia. The triphenylmethane dye, crystal violet, was degraded extensively by growing cells of Stenotrophomonas maltophilia LK-24 in agitated liquid cultures, although their growth was strongly inhibited in the initial stage of incubation. This group of dyes is toxic, depending on the concentration used. The dye was significantly degraded at a relatively lower concentration, below $100{\mu}g\;ml^-1$, yet the growth of the cells was totally suppressed at a dye concentration of $250{\mu}g\;ml^-1$. The degradation products of crystal violet were identified as 4,4'-bis(dimethylamino)-benzophenone and ${\rho}$-dimethylaminophenol by Gas chromatography-Mass spectrometry. The 4,4'-bis(dimethylamino)-benzophenone was easily obtained in a reasonable yield, as it was not metabolized further by S. maltophilia LK-24; however, the ${\rho}$-dimethylaminophenol was not easily identifiable, as it was further metabolized.

Purification and Biochemical Characterization of a Novel Fibrinolytic Enzyme from Streptomyces sp. P3

  • Cheng, Guangyan;He, Liying;Sun, Zhibin;Cui, Zhongli;Du, Yingxiang;Kong, Yi
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1449-1459
    • /
    • 2015
  • A novel proteolytic enzyme with fibrinolytic activity, FSP3, was purified from the recently isolated Streptomyces sp. P3, which is a novel bacterial strain isolated from soil. FSP3 was purified to electrophoretic homogeneity by ammonium sulfate precipitation, anion exchange, and gel filtration. FSP3 is considered to be a single peptide chain with a molecular mass of 44 kDa. The maximum activity of the enzyme was observed at 50℃ and pH 6.5, and the enzyme was stable between pH 6 and 8 and below 40℃. In a fibrin plate assay, FSP3 showed more potent fibrinolytic activity than urokinase, which is a clinical thrombolytic agent acting as a plasminogen activitor. The activity was strongly inhibited by the serine protease inhibitor PMSF, indicating that it is a serine protease. Additionally, metal ions showed different effects on the activity. It was significantly suppressed by Mg2+ and Ca2+ and completely inhibited by Cu2+, but slightly enhanced by Fe2+. According to LC-MS/MS results, its partial amino acid sequences are significantly dissimilar from those of previously reported fibrinolytic enzymes. The sequence of a DNA fragment encoding FSP3 contained an open reading frame of 1287 base pairs encoding 428 amino acids. FSP3 is a bifunctional enzyme in nature. It hydrolyzes the fibrin directly and activates plasminogen, which may reduce the occurrence of side effects. These results suggest that FSP3 is a novel serine protease with potential applications in thrombolytic therapy.