• Title/Summary/Keyword: soil strain

Search Result 1,970, Processing Time 0.036 seconds

Mechanical Characteristics of Light-weighted Soils Using Dredged Soils (준설토를 활용한 경량혼합토의 역학적 특성 연구)

  • 윤길림;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.75-83
    • /
    • 2002
  • This paper is to investigate the mechanical characteristics of light-weighted soils (LWS) consisting of expanded polystyrene(EPS), dredged clays and cement by using both uniaxial and triaxial compression tests. The mechanical characteristics of the compressive strength of LWS are analysed with varying initial water contents of dredged clays, EPS ratio, cement ratio, and curing stress. In the triaxial compression state, it is found that the compressive strength of LWS containing EPS is independent on the effective confined stress. As the EPS ratio decreases($A_E$<2%) and cement ratio increases($A_c$>2%), the behavior characteristics of triaxial compressive strength-strain relationship is similar to that of cemented soil which decreases rapidly in compressive strength after ultimate compressive strength. For the applications of LWS to ground improvements which require the compressive strength of up to 200kPa, the optimized EPS ratio and initial water content of dredged clay are estimated to be 3~4% and 165~175%, respectively. Also, the ultimate compressive strength under both triaxial test and uniaxial compression states are almost constant for a cement ratio of up to 2% and then critical cement ratio of this LWS shall be 2%.

A Study on Change of Safety Factor according to Slope Analysis Method using Strength Parameters and Slope Change (강도 정수와 경사도 변화를 활용한 비탈면 해석기법에 따른 안전율 변화에 관한 연구)

  • Moon, Hyojong;Shim, Jeonghoon;Jeong, Jisu;Lee, Seungho
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • The slope stability analysis by the limit equilibrium method has the disadvantage that it can be applied only when the analysis is performed by setting the critical plane after analyzing the active surface many times and the soil is uniform and only the safety factor can be calculated. However, the analysis using the strength reduction analysis method has advantages that the engineer can judge various aspects and calculate the safety factor. In this study, the safety factor according to the change of slope and shear strength was compared and analyzed using limit equilibrium analysis and strength reduction method. It is suggested that it is desirable to use the strength reduction method which can synthetically review the stress, displacement, and strain in the soil.

Joint Stability and lateral behavior of composite piles (복합말뚝 연결부 안정성 평가 및 수평거동특성 분석)

  • Shin, Yun-Sup;Park, Jae-Hyun;Hwang, Ui-Seong;Cho, Sung-Han;Chung, Moon-Kyung;Boo, Kyo-Tag
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.553-558
    • /
    • 2010
  • The behavior of composite piles composed of steel pipe pile in the upper part and concrete pile in the lower part by a mechanical splicing joint was examined by field lateral load tests and bending tests. A total of 7 piles including two instrumented piles for bending test were installed. The soil profile consists of soft clay with weak silt with shallow groundwater level. Laboratory tests were carried out to determine the basic soil characteristics and the strength parameters. This paper presents the composite pile behavior with various portions of the upper steel pile: 0, 20, 30, and 45% of the pile embedded pile length. Three-point bending tests were performed to investigate the stress-strain relation at the mechanical joint. Based on these test results, the behavior of composite piles with various upper steel pile length are evaluated and the stability of mechanical joints are examined. Through comparisons with results of field load tests, it was found that lateral load carrying capacity of the composite piles increased and deflections of the composite piles decreased with increasing the upper steel piles. The mechanical joint was proved to retain its structural stability against the tested load conditions. Economical benefits of composite pile of this kind can be gained by setting adequately the length of the upper steel pipe piles.

  • PDF

Influence of Different pH Conditions and Phosphate Sources on Phosphate Solubilization by Pantoea agglomerans DSM3493

  • Walpola, Buddhi Charana;Keum, Mi-Jung;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.998-1003
    • /
    • 2012
  • Pantoea agglomerans DSM3493 was isolated from green house soils collected from Chungchugnam-do province, Gongju-Gun area in South Korea and phosphate solubilization and organic acid production of the strain were assessed using three types of insoluble phosphate sources (Ca phosphate, Fe phosphate and Al phosphate) under three different pH conditions (7, 8 and 9). The highest Ca phosphate solubilization ($651{\mu}g\;mL^{-1}$) was recorded at pH 7 followed by pH 8 and 9 (428 and $424{\mu}g\;mL^{-1}$ respectively). The solubilization rate was found to be 80.4, 98.1 and $88.7{\mu}g\;mL^{-1}$ (for Fe phosphate containing medium) and 9.3, 12.1 and $29.8{\mu}g\;mL^{-1}$ (for the Al phosphate containing medium) respectively at pH 7, 8 and 9. Though increasing pH of the medium caused reduction in the rate of solubilization of Ca phosphate, solubilization of Fe and Al phosphates enhanced with increasing pH. By contrast, the highest amount of organic acid was produced with Ca phosphate while the lowest was recorded with the presence of Al phosphate. Among the organic acids, gluconic acid production was found to be the highest, followed by oxalic acid and citric acid regardless the source of phosphate. Results can thus be concluded that the production of organic acids appears to play a significant role in the inorganic phosphate solubilization.

Study on Heat Resistant Putrefactive Spore Formers in Korean Soil and Processed Foods -Part 1. Survey on regional distribution of spore forming bacteria- (가공식품(加工食品)의 내열성부패균(耐熱性腐敗菌) 분포(分布) 조사연구(調査硏究) -(제(第) 1 보(報)) 지역별(地域別) 아포형성균(芽胞形成菌) 조사(調査)-)

  • Koo, Young-Jo;Shin, Dong-Hwa;Kim, Choung-Ok;Min, Byoung-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.224-230
    • /
    • 1978
  • Heat resistant putrefactive microorganisms causing spoilage of canned and processed foods were surveyed in the compost on mushroom growing bed, casing soil, raw mushrooms and canned products before sterilization at canneries located at 8 places including Buyo in Chung-Cheung-Do and monitored the total count and spore formers from the sample taken. The 9 strains of most severe heat resistant among the selected 140 spore formers were selected and determined D and Z value by TDT method. The most strong heat resistant strain was No. F-10, facultative thermophile, which was isolated from raw mushroom in Buyo area and it's Z value was $21.1^{\circ}F$ (M/15 phosphate buffer solution) and $D^{250}$ was 6.6 min.

  • PDF

Aroma Compounds Produced by the Yeast Hansenula saturnus var. saturnus Isolated from Soil (토양에서 분리한 Hansenula saturnus var. saturnus에 의한 휘발성 방향성분의 생성)

  • Ahn, Byung-Hak;Kang, Hun-Seung;Shin, Hyun-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.718-723
    • /
    • 1988
  • A yeast strain producing fruity-floral aroma was isolated from soil and identified as Hansenula saturnus var. saturnus. Glucose was found to be the best carbon source and sodium nitrate or phenylalanine as nitrogen source in terms of the nature and the intensity of the aroma produced by the isolated yeast. Seventeen compounds, mainly esters and alcohols, were identified in the ether-pentane extract of the culture broth by gas chromatography and/or coupled gas chromatography-mass spectrometry. Ethyl alcohol, isobutyl alcohol, isoamyl alcohol, phenethyl alcohol and their acetate esters together with ethyl caprylate were the major compounds in the aroma concentrate. Three unusual compounds, dibutyl disulfide, 3-methyl pentanoic acid and methyl pentanoate were also tentatively identified in the culture broth of the isolated yeast.

  • PDF

Rock bridge fracture model and stability analysis of surrounding rock in underground cavern group

  • Yu, Song;Zhu, Wei-Shen;Yang, Wei-Min;Zhang, Dun-Fu;Ma, Qing-Song
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.481-495
    • /
    • 2015
  • Many hydropower stations in southwest China are located in regions of brittle rock mass with high geo-stresses. Under these conditions deep fractured zones often occur in the sidewalls of the underground caverns of a power station. The theory and methods of fracture and damage mechanics are therefore adopted to study the phenomena. First a flexibility matrix is developed to describe initial geometric imperfections of a jointed rock mass. This model takes into account the area and orientation of the fractured surfaces of multiple joint sets, as well as spacing and density of joints. Using the assumption of the equivalent strain principle, a damage constitutive model is established based on the brittle fracture criterion. In addition the theory of fracture mechanics is applied to analyze the occurrence of secondary cracks during a cavern excavation. The failure criterion, for rock bridge coalescence and the damage evolution equation, has been derived and a new sub-program integrated into the FLAC-3D software. The model has then been applied to the stability analysis of an underground cavern group of a hydropower station in Sichuan province, China. The results of this method are compared with those obtained by using a conventional elasto-plastic model and splitting depth calculated by the splitting failure criterion proposed in a previous study. The results are also compared with the depth of the relaxation and fracture zone in the surrounding rock measured by field monitoring. The distribution of the splitting zone obtained both by the proposed model and by the field monitoring measurements are consistent to the validity of the theory developed herein.

Study on Fatigue Life of Continuously Reinforced Concrete Pavement with Design Parameter (설계변수별 연속철근 콘크리트 포장의 피로수명 연구)

  • Park, Jong-Sup;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.1-10
    • /
    • 2007
  • A laboratory investigation is conducted to characterize and quantify fatigue lives of continuously reinforced concrete pavements (CRCP) with initial design parameters. Eight specimens scaled were made based on results of finite-element analyses and stress-strain curve comparisons. Static tests were firstly performed to obtain magnitudes of static failure loads and to predict crack patterns before fatigue tests. The fatigue lives measured in the study were compared based on each initial design parameter. The comparison indicates that the fatigue lives of CRCP specimens with initial cracks increases with increasing the initial crack spacing, and CRCP specimens with reinforcements at top of the concrete slab have more fatigue lives than those with reinforcements at midheight of the concrete slab. In addition, the fatigue lives were significantly affected by soil conditions under the CRCP specimens. The results obtained in the study can be used for maintenance and retrofit of the continuously reinforced concrete pavements.

Analysis of the Structural Behaviours of Aluminum Tunnel Lining in Joomunjin Standard Soil by Centrifugal Model Tests (원심모형실험을 이용한 주문진 표준사 지반내 알루미늄 모형 터널 복공의 역학적 거동에 관한 연구)

  • 김택곤;김영근;박중배;이희근
    • Tunnel and Underground Space
    • /
    • v.9 no.2
    • /
    • pp.114-130
    • /
    • 1999
  • It is very important to study on the structural behaviors of structurally damaged tunnel linings. A series of centrifuge model tests were performed in order to investigate different behaviors of tunnel linings. A 1/100-scaled aluminum horseshoe tunnel linings with a radius 5 cm, height 8 cm were buried in a depth with dry Joomunjin standard sand, the relative density of which was 86%. Such sectional forces as bending moments and thrusts along the tunnel circumference were measured by twelve strain gages. Earth pressures in soil mass and on the outside of lining model were estimated by pressure transducers, ground surface settlements at a center and edges by using LVDTs.

  • PDF

Analysis of Seismic Response of the Buried Pipeline with Pipe End Conditions (I) (단부 경계조건을 고려한 매설관의 동적응답 해석 (I))

  • Jeong, Jin-Ho;Lee, Byong-Gil;Park, Byung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1148-1158
    • /
    • 2005
  • This work reports results of our study on the dynamic responses of the buried pipelines both along the axial and the transverse directions under various boundary end conditions. We have considered three cases, i.e., the free ends, the fixed ends, and the fixed-free ends. We have studied the seismic responses of the buried pipelines with the various boundary end conditions both along the axial and the transverse direction. We have considered three cases, i.e., the free ends, the fixed ends, and the fixed-free ends for the axial direction, and three more cases including the guided ends, the simply supported ends, and the supported-guided ends for the transverse direction. The buried pipelines are modeled as beams on elastic foundation while the seismic waves as a ground displacement in the form of a sinusoidal wave. The natural frequency and its mode, and the effect of parameters have been interpreted in terms of free vibration. The natural frequency varies most significantly by the soil stiffness and the length of the buried pipelines in the case of free vibration, which increases with increasing soil stiffness and decreases with increasing length of the buried pipeline. Such a behavior appears most prominently along the axial rather than the transverse direction of the buried pipelines. The resulting frequencies and the mode shapes obtained from the free vibration for the various boundary end conditions of the pipelines have been utilized to derive the mathematical formulae for the displacements and the strains along the axial direction, and the displacements and the bending strains along the transverse direction in case of the forced vibration. The negligibly small difference of 6.2% between our result and that of Ogawa et. al. (2001) for the axial strain with a one second period confirms the accuracy of our approach in this study.

  • PDF