• Title/Summary/Keyword: soil strain

Search Result 1,969, Processing Time 0.035 seconds

Isolation, identification, and culture conditions of the strain producing antibacterial antibiotic (항세균성 항생물질을 생산하는 미생물의 분리, 동정 및 배양조건)

  • Yoo, Jae-Hong;Yoon, Sang-Hong;Koo, Bon-Sung;Yeo, Yun-Soo;Park, In-Cheol;Lee, Byung-Moo;Ryu, Jin-Chang
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.2
    • /
    • pp.1-7
    • /
    • 1999
  • The strain with antibacterial activity was isolated among soil samples collected in Suwon area. The isolated strain was identified as Bacillus sp. YR-1 with respect to its morphological, cultural, and physiological characteristics. Optimal medium for the highest production of antibiotic was composed of sucrose 2.0%(w/v), peptone 2.0%(w/v) and NaCl 0.1%(w/v). The maximum production of antibiotic was shown at $35^{\circ}C$ for 48 hours with the initial pH 7.0.

  • PDF

Optimization of Culture Condition of Nocardia sp. L-417 Strain for Biosurfactant Production (Biosurfactant의 생산을 위한 Nocardia sp. L-417균주의 배양조건 최적화)

  • 이태호;김순한;임이종
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.2
    • /
    • pp.252-258
    • /
    • 1998
  • The strain producing biosurfactant was isolated from soil smples. The isolated strain was identified as the genus Nocardia through its morphological, cultural and physiolgical characteristics. A high concentration of the biosurfactant by Nocardia sp. L-417 was obtained after 4 days of cultivation in the culture medium containing 3% n-hexadecane, 0.1% $NaNO_3$, 0.02% $K_2HOP_4$, 0.01% $H_2PO_4$, 0.01% $MgSO_4$.$7H_2O$, 0.01% $CaCl_2$, 0.02% yeast extract, and 0.02% tryptone. The optimum pH and temperature for biosurfactant production were pH 6.0 and $30^{\circ}C$, respectively. Furthermore, most biosurfactans were produced during the exponential growth phase, and this fact indicated that the biosurfactans production was growth-associated. The biosurfactant showed the good emulsification activities on various emulsifying substrates such as bunker A, paraffin, corn oil which are used widely in industries.

  • PDF

Isolation and Characterization of a Crude oil-Degrading Strain, Nocardia sp. H 17-1 (원유 분해균주 Nocardis sp. Hl7-1의 분리 및 특성)

  • 이창호;권기석
    • KSBB Journal
    • /
    • v.11 no.6
    • /
    • pp.654-662
    • /
    • 1996
  • Bacterial strains which degrade crude oil were isolated by liquid culture from oil-spilled soil, and four isolates were selected among them. The strain Hl7-1 was finally selected after testing emulsifying activity and oil conversion rate. The strain Hl7-1 was identified as a Nocardia sp. based on the test for morphological, biochemical and physiological characteristics. It appears to be highly specialized for growth on crude oil in minimal salts medium since it showed preference for oil or degradation products as substrates for growth. It was found that it could grow on at least fifteen different hydrocarbons. The optimum cultural and environmental conditions were seeked. Cell growth and emulsification activity as a function of time were also determined. Crude oil degradation and the reduction of product peak was identified by the analysis of remnant oil by gas chromatography after 3 days of cultivation. Approximately 83% of oil were converted into a form no longer extractable by organic solvents.

  • PDF

Isolation and Characteristics of an Amylase-producing Fungus for Saccharifying Food Wastes (음식물쓰레기 당화를 위한 Amylase 생산균의 분리 및 특성조사)

  • Li, Hong-Xian;Kim, Seong-Jun
    • KSBB Journal
    • /
    • v.22 no.2
    • /
    • pp.114-118
    • /
    • 2007
  • In this study, an amylase-producing fungus, strain 15 was isolated from soil in order to saccharify food wastes with cellulolytic and amylolytic enzymes. The amylase production cultures were performed in Mandel's medium with 1% rice straw and 1% paper wastes as carbon sources. The strain produced various cellulolytic (FPase 0.25, xylanase 20.09, CMCase 3.15 U/mL-supernatant) and amylolytic ($\alpha$-amylase 1.20, gluco-amylase 0.70, $\beta$-amylase 2.40 U/mL-supernatant) enzymes in Mandel's medium. In 10 L jar fermenter, maximum amylase and FPase activities, 3.25 and 0.23 U/mL, were obtained when the culture was grown at 30$^{\circ}C$, 200 rpm and 0.6 vvm for 3 days. In 100 mL flask level and 10 L jar fermenter, amylase produced by the strain 15 showed similar cellulolytic and amylolytic enzyme activities with Trichoderma inhamatum KSJ1 isolated from rotten woods by previous researcher. The ability of saccharification to food wastes also showed similar degree. However, the isolate 15 appeared to be yellowish in YMEA plate comparing to Trichoderma inhamatum KSJ1 in greenish.

Pseudomonas sp. G19 Alleviates Salt Stress and Promotes Growth of Chinese Cabbage (Pseudomonas sp. G19에 의한 배추의 염 스트레스 경감 및 생장 촉진)

  • Lee, Gun Woong;Lee, Kui-Jae;Chae, Jong-Chan
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.368-371
    • /
    • 2014
  • A variety of abiotic stresses limit plant growth and crop productivity. Among the abiotic stress, salinity is one of the major harmful stresses to plants. Plant growth-promoting bacterium was isolated from reclaimed land soil of Kyehwa-do and identified as Pseudomonas. Pseudomonas sp. strain G19 produced $7.5{\mu}g/ml$ of indole acetic acid and solubilized 25% of insoluble phosphate after 36 h cultivation. Also, G19 was able to produce a protein that was structurally homologous to 1-aminocyclopropane-1-carboxylate deaminase of Pseudomonas fluorescens KACC10070 playing a role in reduction of ethylene in plant. The strain G19 increased the biomass of Chinese cabbage seedlings grown in the presence of 150 mM NaCl. The results indicated that the strain G19 promoted the growth of Chinese cabbage seedling under salinity stress through microbe-plant interactions.

Nitrate Removal by Pseudomonas fluorescens K4 Isolated from a Municipal Sewage Treatment Plant

  • Lee, O-Mi;Oh, Jong-Hyeok;Hwang, Doo-Seong;Choi, Yun-Dong;Chung, Un-Soo;Park, Jin-Ho;Kim, Min-Ju;Jeong, Seong-Yun;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1219-1223
    • /
    • 2007
  • The removal of nitrogen compounds from a wastewater is essential and it is often accomplished by bio-logical process. An aerobic nitrate-removing bacterium was isolated from a municipal sewage treatment plant and soil. On the basis of its morphological, cultural and physiological characteristics and 16S rRNA sequencing data, this strain was identified as Pseudomonas fluorescens, and named as P. fluorescens K4. The optimal conditions of the initial pH and temperature of media for its growth were $7.0{\sim}8.0$ and $30^{\circ}C$, respectively. P. fluorescens K4 was able to remove 99.9% of nitrate after 24 h in a culture. The strain could grow with a nitrate concentration up to 800 mg/l and was able to remove 99.9% of nitrate after 104 h of incubation. The optimal electron donor was sodium citrate for a nitrate removal. The strain K4 showed a capability of a complete nitrate removal when the initial C/N ratio was 1.0. An effect of the initial seed concentration was observed for a cell of 10% (v/v) for a nitrate removal. Especially P. fluorescens K4 could completely remove 200 mg/l ammonium for 3 days.

Isolation and Characterization of Comprehensive Polychlorinated Biphenyl-Degrading Bacterium, Enterobacter sp. LY402

  • Jia, Ling-Yun;Zheng, Ai-Ping;Xu, Li;Huang, Xiao-Dong;Zhang, Qing;Yang, Feng-Lin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.952-957
    • /
    • 2008
  • A Gram-negative bacterium, named LY402, was isolated from contaminated soil. 16S rDNA sequencing and measurement of the physiological and biochemical characteristics identified it as belonging to the genus Enterohacter. Degradation experiments showed that LY402 had the ability to aerobically transform 79 of the 91 major congeners of Aroclor 1242, 1254, and 1260. However, more interestingly, the strain readily degraded certain highly chlorinated and recalcitrant polychlorinated biphenyls (PCBs). Almost all the tri- and tetra-chlorobiphenyls (CBs), except for 3,4,3',4'-CB, were degraded in 3 days, whereas 73% of 3,4,3',4'-, 92% of the penta-, 76% of the hexa-, and 37% of the hepta-CBs were transformed after 6 days. In addition, among 12 octa-CBs, 2,2',3,3',5,5',6,6-CB was obviously degraded, and 2,2',3,3',4,5,6,6'- and 2,2',3,3',4,5,5',6'-CB were slightly transformed. In a metabolite analysis, mono- and dichlorobenzoic acids (CBAs) were identified, and parts of them were also transformed by strain LY402. Analysis of PCB degradation indicated that strain LY402 could effectively degrade PCB congeners with chlorine substitutions in both ortho- and para-positions. Consequently, this is the first report of an Enterobacteria that can efficiently degrade both low and highly chlorinated PCBs under aerobic conditions.

Studies on the Glucose Isomerizing Enzyme -Part I. The Isolation and Detection of Glucose Isomerizing Enzyme produced by Microorganism- (포도당(葡萄糖) 이성화(異性化) 효소(酵素)에 관(關)한 연구(硏究) -제1보(第一報), 포도당(葡萄糖) 이성화(異性化) 효소생성균(酵素生成菌)의 분리(分離) 및 검색(檢索)-)

  • Seu, J.H.;Kim, C.K.;Ki, W.K.;Rhee, I.K.;Kwon, T.J.;Woo, D.L.
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.43-47
    • /
    • 1969
  • With an attempt to obtain a glucose isomerizing enzyme producing microorganism, one hundred and thirty-three strains of microorganism were isolated from soil samples. After screening, a strain K-17 which belonging to actinomyces family, was finally selected. Using this strain of K-17, sugars produced from glucose by the reaction of sugar isomerizing enzyme were tested with paper chromatography. Only a kind of resulting sugar, fructose, was detected from enzyme reaction sample and other sugars were never detected. By these results, the enzyme produced by strain K-17 is classified as a glucose isomerase.

  • PDF

Studies on the Extracellular Protein Production by Bacillus sp. (Bacillus 속(屬)균에 의한 균체외(菌體外) 단백질의 생산에 대하여)

  • Cha, Hyeon-Jeong;Kim, Chan-Jo
    • Applied Biological Chemistry
    • /
    • v.28 no.3
    • /
    • pp.209-217
    • /
    • 1985
  • Seventeen extracellular protein producing bacteria were isolated from soil samples, among which T219 strain having a strong capability of producing the protein was selected and identified for investigation of biological characteristics. The factors which affect the protein production were investigated and the results are summarized as follows. T219 strain which produces the most extracellular protein was identified as Bacillus sp. Optimum temperature and pH for production of the extracellular protein by T219 strain were $25^{\circ}C$ and 7.5 respectively. Almost no activities of protease and amylase were observed in the protein produced by the protein producing bacteria. In the medium containing yeast extract, the cell growth was moderately high, but almost no accumulation of protein was observed. However, polypeptone had significant effects on both the cell growth and the protein accumulation. The addition of glycine and L-isoleucine to the medium containing polypeptone, yeast extract and meat extract had a great effect on the protein production; 4mg/ml of protein accumulation was observed.

  • PDF

Isolation, Identification and Enzyme Properties of a Bacterium producing Alkaline Protease (Alkaline protease를 생산하는 미생물의 분리, 동정 및 효소성질)

  • Shin, Kong-Sik;Kang, Sang-Mo;Ko, Jung-Youn
    • Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.169-173
    • /
    • 2000
  • For the development of enzyme detergent capable of effectively washing at low temperature, a bacterium producing alkaline protease was isolated from soil samples, and properties of the enzyme were investigated. The selected strain was Gram negative, rod shape$(0.6{\sim}0.7{\times}1.3{\sim}2.6\;{\mu}m\;in\;size)$ and motile. It had the degradation activity of aesculin, gelatin and casein, and was catalase-positive. The cell wall components was meso-DAP, and G+C mole contents was 43.3%. From these results, the strain was identified as Acinetobacter sp. KN-27. The activity of alkaline protease by this strain peaked with 3,300 D.U/mL after 36 hours in the liquid culture at $40^{\circ}C$. The optimal pH and temperature of the enzyme were pH 9 and $60^{\circ}C$, respectively. Alkaline protease produced by Acinetobacter sp. KN-27 has shown two active bands on the electrophoresis of native gel.

  • PDF