• Title/Summary/Keyword: soil solution concentration

Search Result 447, Processing Time 0.025 seconds

중금속으로 오염된 사격장토의 동전기 정화 -실내 파일롯 실험 중심으로-

  • 한상재;김병일;이정철;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.69-72
    • /
    • 2003
  • The purpose of this study is the development of hybrid horizontal electrokinetic(EK) remediation system on rifle range soil under unsaturated conditions. In order to remediate soil polluted by multi-species heavy metals, in pi]of scale, a series of EK remediation tests are carried out. PVC and PDB(Plastic Drain Board) electrode systems that connected with the power supply of constant voltage and vacuum pressure of 0.5kgf/$\textrm{cm}^2$ are installed, The test results showed that the pH distribution in the sample is below 8, which is maintained until the test is finished, because of the injection of flushing solution. The final concentration, which is normalized by initial concentration, is ranged about 50 to 90%.

  • PDF

Lead Adsorption onto a Domestic Ca-Bentonite (국산 칼슘-벤토나이트에 대한 납 흡착)

  • 고은옥;이재완;조원진;현재혁;강철형;전관식
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.55-63
    • /
    • 2000
  • Bentonite has low hydraulic conductivity and high sorption capacity to limit hazardous heavy metals migration, and thus it has been considered as a liner material for the landfill of hazardous wastes. With a domestic bentonite sorption tests were carried out to investigate the adsorption isotherm and the effect of solution chemistry and temperature on adsorption. Freundlich isotherm was applied to fit the experimental data of lead adsorption, which fitted them well. Freundlich constants and correlation coefficient were calculated to be $K_{F}$\;=\;1.14$, n = 1.70, and $r^{2}\;=\;0.99$, respectively. The distribution coefficients($K_{d}$) for the adsorption of lead decreased with increasing initial lead concentration. The IL increased with increasing the pH of solution and sharply increased at pH > 7, which was attributed to the precipitation of lead species. The IL decreased with increasing the ion strength of solution. The $K_{d}$ gave a small increase with the concentration of ${SO_4}^{-2}$, whereas it had a nearly constant level with the concentration of ${HCO_3}^{-}$ in solution. An increase in the temperature of experimental solution increased the $K_{d}$.

  • PDF

Effects of Soil Acidification on Growth of Impatiens balsamina L. and Tagetes patula L. Plants (토양산성화가 봉선화(Impatiens balsamina L.) 및 만수국(Tagetes patula L.)의 생장에 미치는 영향)

  • 김학윤
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.153-158
    • /
    • 2001
  • To investigate the effects of soil acidification on growth of Impatiens balsamina L. plants were transplanted to acidified soils with H$_2$SO$_4$ solution. The concentrations of soluble Ca, Mg, K, Al and Mn in the acidified soils increased with increment of H$^{+}$ addition to the soil. In both species, the plant height and root length were inhibited by soil acidification, showing much severer inhibition in Impatiens balsamina L. than in Tagetes patula L., As the soil pH decreases, the growth of underground parts decreased greatly than that of above ground parts in both species. Total dry weight decreased with increased Al concentration as well as lowered soil pH in both plants. There was a strong positive correlation between relative total dry weight and molar (Ca+Mg+K) / Al ratio of the soil. The results suggest that molar(Ca+Mg+K)/ Al ratio of the soil may be useful indicator for assessing the critical load of acid deposition in herb species.s.

  • PDF

Suppression of Morningglory (Ipomoea Hederacea) Growth by Rhizobacteria and IAA-3-ACETIC Acid

  • Kim, Su-Jung
    • Korean Journal of Organic Agriculture
    • /
    • v.14 no.4
    • /
    • pp.411-420
    • /
    • 2006
  • Indole-3-acetic acid (IAA) biosynthesis by bacteria occurs widely in rhizospheres. Bacterial species able to synthesize IAAmay be exploited for beneficial interactions in crop management systems. The objective of this study was to determine the response of ivyleaf morningglory (Ipomoea hederacea) seedlings to IAA and to an IAA-producing rhizobacterum, Bradyrhizobium japonicum isolate GD3. IAA solution and isolate GD3 suppression of seedling growth measured as radicle length and biomass depended on IAA concentration. Seedling radicle length was significantly reduced by ca. 29% with more than $1.0{\mu}M$ of IAA solution, compared to the control, 48 h after application. The cell concentration at 50% growth reduction ($GR_{50}$) of the seedling radicle was IAA production by isolate GD3 at $10^{4.82}\;cfu$, the cell concentration for 50% growth reduction ($GR_{50}$) of seedling radicle was 0.24 iM, which was much lower than the IAA solution concentration ($117.48{\mu}M$) required for $GR_{50}$. Therefore, excess IAA production by isolate GD3 may be more detrimental to morningglory radicle growth than standard IAA solution. Results confirmed involvement of IAA in suppressive effects of isolate GD3 on morning-glory seedlings grown in a hydroponic system.

  • PDF

Allelopathic and Autotoxic Effects of Alfalfa Plant and Soil Extracts

  • Chon, Sang-Uk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.7-11
    • /
    • 2004
  • Alfalfa (Medicago sativa L.) plants have been reported to be autotoxic as well as allelopathic. Laboratory and greenhouse experiments through petri-dish and pot test were conducted to determine autotoxic effects of alfalfa leaf and soil extracts on the germination or early seedling growth of alfalfa, and to evaluate allelopathic effects of alfalfa leaf residues on alfalfa, barnyard grass, com, eclipta and soybean. Alfalfa seed germination was delayed depending on aqueous extract concentration, with no difference in final germination after 48 hours. Alfalfa root length was more sensitive to the autotoxic chemicals from leaf extracts than was germination or shoot length. Root growth of alfalfa was significantly inhibited at extract concentration of more than 1 g dry tissue/L (g $\textrm{L}^{-1}$). Hypocotyl growth, however, was not affected by all the concentrations of leaf extracts. Soil extracts from 4-yr-old alfalfa stand significantly reduced alfalfa root length by 66%, while soil extracts from 0,1, and 3yr-old stand stimulated root length up to 14-32% over the control. Residue incorporation with dry matters of alfalfa leaf at 100 g $\textrm{kg}^{-1}$ reduced seedling length of several crop and weed species, ranging from 53 to 87% inhibition. Addition of nutrient solution into alfalfa leaf extracts alleviated alfalfa autotoxic effect. This result indicates alfalfa leaf and soil extracts or residues could exert autotoxic as well as allelopathic substances into soil environments during and after establishment.

Studies on the Detergency of Oily Soils (Part III) -Detergency of Liquid Oily Soils by the Formation of Liquid Crystal- (유성오염의 세척성에 관한 연구(제3보) -액수형성에 의한 액체유성오염의 세척성-)

  • 김영희;정두진
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.19 no.3
    • /
    • pp.425-425
    • /
    • 1995
  • The interaction and detergency between liquid oily soil and surfactant solution were studied by the mechanism of formation of liquid crestal(LC). Samples used were triolein as a triglyceride, oleic acid as a free fatty acid and sodium dodgily sulfate (SDS) as a surfactant. The results were as follows: In the phase diagram of SDS/oil/Water system, the area of liquid crystalline phase region were in the order of SDS/trillion/water< SDS/oleic acid/water< SDS/mixture of trillion and oleic acid/water. In the system of oleic acid alone or mixture of trillion and oleic acid contacted with SDS solution, the LC phase was formed right after or after some time with SDS concentration. But in a case of trillion alone, the LC phase was not formed although the concentration of the SDS solution was relatively high. The detergency of model oily soils were seldom changed with temperature, and the detergency of oleic acid was very high compared to that of the trillion. The detergency of mixed soil was improved with the increase of the ratio of oleic acid in the mixture.

Studies on the Detergency of Oily Soils (Part III) -Detergency of Liquid Oily Soils by the Formation of Liquid Crystal- (유성오염의 세척성에 관한 연구(제3보) -액수형성에 의한 액체유성오염의 세척성-)

  • 김영희;정두진
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.19 no.3
    • /
    • pp.426-433
    • /
    • 1995
  • The interaction and detergency between liquid oily soil and surfactant solution were studied by the mechanism of formation of liquid crestal(LC). Samples used were triolein as a triglyceride, oleic acid as a free fatty acid and sodium dodgily sulfate (SDS) as a surfactant. The results were as follows: In the phase diagram of SDS/oil/Water system, the area of liquid crystalline phase region were in the order of SDS/trillion/water< SDS/oleic acid/water< SDS/mixture of trillion and oleic acid/water. In the system of oleic acid alone or mixture of trillion and oleic acid contacted with SDS solution, the LC phase was formed right after or after some time with SDS concentration. But in a case of trillion alone, the LC phase was not formed although the concentration of the SDS solution was relatively high. The detergency of model oily soils were seldom changed with temperature, and the detergency of oleic acid was very high compared to that of the trillion. The detergency of mixed soil was improved with the increase of the ratio of oleic acid in the mixture.

  • PDF

현장 규모 biobarrier의 수리학적 특성과 기초 설계

  • 최영화;오재일;왕수균;배범한
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.426-430
    • /
    • 2003
  • Subsurface biobarrier technology has potential applications to contain contaminated groundwater and/or to degrade toxic pollutants in groundwater. Effective biobarrier formation is need to assess of hydrogeologic characteristics and to conduct practical operation strategies and design based on this prior to design biobarrier. Thus, in this study, we examined hydrogeologic characteristics in biobarrier construction site. Hydraulic conductivities which calculated from slug test data have shown difference with each well as 1.20$\times$10$^{-3}$ -6.00$\times$10$^{-5}$ cm/sec. Tracer test is a method in which concentration of tracer solution during withdrawal in each well by vacuum extraction system is measured with time. Tracer solution was continuously injected by constant head tank. Measured tracer concentration versus time data were fitted to analytical solution of convection dispersion equation (CDE). The fitting data of CDE to the measured data at each extraction well yielded were 0.61cm/min(pore velocity), 5.38$\textrm{cm}^2$/min(dispersion coefficient) for discharge rate of 0.47 1/min and 1.75cm/min(pore velocity), 36.34$\textrm{cm}^2$/min(dispersion coefficient) for discharge rate of 0.93 1/min. As a result, we acquired fundamental parameters which need to design biobarrier and operation strategies.

  • PDF

Application of the Nonionic Surfactant-enhanced Soil Washing to the Kuwait Soil Seriously Contaminated with the Crude Oil (원유로 심하게 오염된 쿠웨이트 토양 정화를 위한 비이온 계면활성제의 토양세척법 적용)

  • Heo, Hyojin;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.491-500
    • /
    • 2015
  • Batch experiments were performed to determine the feasibility of the surfactant-enhanced soil washing process at various washing conditions for the Kuwait soil seriously contaminated with the crude oil. The soil was sampled at a dried oil pond in Kuwait and its average TPH concentration was 223,754 mg/kg, which was too high to apply the conventional remediation process. Nine commercialized non-ionic surfactants were used for the batch experiment to measure the surfactant solubility for the crude oil because it was reported that they have worked for the soil remediation. Among them, three surfactants having high crude oil solubility were used for the soil washing experiment. From the result of batch experiment, 5% TritonX-100 washing solution showed the highest TPH removal efficiency (67%) for the crude oil contaminated soil. However, because the residual TPH concentration in the washed soil was still higher than the clean-up level in Kuwait (10,000 mg/kg), the repeated soil washing was performed. After five washings with 2% surfactant solution, the cumulative TPH removal efficiency was higher than 96% and the residual TPH concentration in the soil went down below the clean-up level. To measure the desorption capacity of TritonX-100 remained in the soil after the soil washing, the silica beads and the soil were washed five times with 2% TritonX-100 surfactant solution and then they were washed again with distilled water to detach the surfactant adsorbed on beads or soil. After five washings with surfactant solution, 7.8% and 19.6% of the surfactant was adsorbed on beads and soil, respectively. When additionally washed with distilled water, most of the residual surfactant were detached from beads and only 4.3% of surfactant was remained in soil. From the results, it was investigated that the surfactant-enhanced soil washing process with TritonX-100, Tergitol S-15-7, and Tergitol S-15-9 has a great capability for the remediation of the Kuwait soil seriously contaminated by crude oil (more than 220,000 mg/kg).

Soil Washing Coupled with the Magnetic Separation to Remediate the Soil Contaminated with Metal Wastes and TPH (자력선별과 토양세척법을 연계하여 금속폐기물과 TPH로 복합 오염된 토양 동시 정화)

  • Han, Yikyeong;Lee, Minhee;Wang, Sookyun;Choi, Wonwoo
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • Batch experiments for the soil washing coupled with the magnetic separation process were performed to remediate the soil contaminated with metal and oil wastes. The soil was seriously contaminated by Zn and TPH (total petroleum hydrocarbon), of which concentrations were 1743.3 mg/kg and 3558.9 mg/kg, respectively, and initial concentrations of Zn, Pb, Cu, and TPH were higher than the 2nd SPWL (soil pollution warning limit: remediation goal). The soil washing with acidic solution was performed to remove heavy metals from the soil, but Pb and Zn concentration of the soil maintained higher than the 2nd SWPL even after the soil washing with acidic solution. The 2nd soil washing was repeated to increase the Pb and Zn removal efficiency and the Zn and Pb removal efficiencies additionally increased by only 8 % and 5 %, respectively, by the 2nd soil washing (> 2nd SPWL). The small particle separation from the soil was conducted to decrease the initial concentration of heavy metals and to increase the washing effectiveness before the soil washing and 4.1 % of the soil were separated as small particles (< 0.075 mm in diameter). The small particle separation lowered down Zn and Pb concentrations of soil to 1256.3 mg/kg (27.9 % decrease) and 325.8 mg/kg (56.3 % decrease). However, the Zn concentration of soil without small particles still was higher than the 2nd SPWL even after the soil washing, suggesting that the additional process is necessary to lower Zn concentration to below the 2nd SPWL after the treatment process. As an alternative process, the magnetic separation process was performed for the soil and 16.4 % of soil mass were removed, because the soil contamination was originated from unreasonable dumping of metal wastes. The Zn and Pb concentrations of soil were lowered down to 637.2 mg/kg (63.4 % decrease) and 139.6 mg/kg (81.5 % decrease) by the magnetic separation, which were much higher than the removal efficiency of the soil washing and the particle separation. The 1st soil washing after the magnetic separation lowered concentration of both TPH and heavy metals to below 2nd SPWL, suggesting that the soil washing conjugated with the magnetic separation can be applied for the heavy metal and TPH contaminated soil including high content of metal wastes.