• Title/Summary/Keyword: soil settlement

Search Result 924, Processing Time 0.027 seconds

Development of online drone control management information platform (온라인 드론방제 관리 정보 플랫폼 개발)

  • Lim, Jin-Taek;Lee, Sang-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.193-198
    • /
    • 2021
  • Recently, interests in the 4th industry have increased the level of demand for pest control by farmers in the field of rice farming, and the interests and use of agricultural pest control drones. Therefore, the diversification of agricultural control drones that spray high-concentration pesticides and the increase of agricultural exterminators due to the acquisition of national drone certifications are rapidly developing the agricultural sector in the drone industry. In addition, as detailed projects, an effective platform is required to construct large-scale big data due to pesticide management, exterminator management, precise spraying, pest control work volume classification, settlement, soil management, prediction and monitoring of damages by pests, etc. and to process the data. However, studies in South Korea and other countries on development of models and programs to integrate and process the big data such as data analysis algorithms, image analysis algorithms, growth management algorithms, AI algorithms, etc. are insufficient. This paper proposed an online drone pest control management information platform to meet the needs of managers and farmers in the agricultural field and to realize precise AI pest control based on the agricultural drone pest control processor using drones and presented foundation for development of a comprehensive management system through empirical experiments.

Evaluation of the Installation Mechanism of the Micropile with the Base Expansion Structure Using a Centrifuge Model Test (원심모형실험을 활용한 선단확장형 마이크로파일의 설치 메커니즘 평가)

  • Kim, Jae-Hyun;Kim, Seok-Jung;Han, Jin-Tae;Lee, Seokhyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.37-49
    • /
    • 2021
  • Micropiles are widely used in construction field to enhance bearing capacity and reduce settlement of existing foundation. It has various benefits such as low construction expense, simple installation process, and small construction equipment. Recently, new microple equipped with the base expansion structure at the end has been developed to improve the foundation bearing capacity. The improvement of load capacity can be conceptually achieved by expanding the base expansion structure when a load is applied to the micropile. However, the expansion mechanism of the base expansion structure and the improvement of load capacity of the micropile were not yet experimentally validated. Therefore, in this study, a series of centrifuge model tests was performed to evaluate the effect of the base expansion structure on the improvement of load capacity. Two types of soil, sand and weathered rock, were prepared and the loading tests were performed using the real micropile with the base expansion structure. During the tests, the earth pressures surrounding the base expansion structure were monitored. As a result, when a load of 30 kN was applied to the micropile, the increase in the ratio of the horizontal to vertical pressure increment (∆σh/∆σ𝜈) ranged from 0.4 to 0.58 in sand and ∆σh/∆σ𝜈 = 0.19 in weathered rock, respectively. Therefore, it can be concluded that the increase in the horizontal earth pressure adjacent to the base expansion structure will improve the bearing capacity of the micropile.

Dissolution Monitoring of Geo-Soluble Mixtures (지반 소실 혼합재의 용해과정 모니터링)

  • Truong, Q. Hung;Byun, Yong-Hoon;Eom, Yong-Hun;Sim, Young-Jong;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.111-122
    • /
    • 2009
  • Dissolution of some of geo-materials may yield the loss of the soil strength and the settlement of earth structures. The goal of this study is to monitor the several physical behaviors of soluble mixtures during dissolution. Sand-salt mixtures are used to monitor the meso to macro response including the settlements and shear waves. The mixtures of photoelastic and ice disks are used to monitor micro to meso behavior of soluble mixture including the void ratio, force chain, coordination number and horizontal force changes. In the sand-salt mixtures, shear waves are measured by using bender elements in conventional oedometer cells. In the photoelastic disk - ice disk mixtures, micro to meso response are measured by digital images and load cells. The shear wave velocity decreases at the initial stage of the dissolution, and then increases and approaches to asymptotic value. The larger dissoluble particle and the more random packing produces the severe horizontal fore change. After dissolution, the void increases and the coordination number decreases. This study demonstrates that the particle level behavior such as the changes of the force chain, void ratio, and coordination number affects the global behavior such as the change of the shear wave velocity and horizontal force of the system.

A Study on the Development of Load Transfer Curves of the Driven Steel Pipe Piles by Soil (타입강관말뚝의 토질별 하중전이곡선 도출에 관한 연구)

  • Lim, Jong-Seok;Choi, Yong-Kyu;Sim, Jong-Sun;Park, Jong-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.29-43
    • /
    • 2009
  • As computational technologies have been developed, the load transfer analysis method using load transfer curves is widely performed. Now the load transfer analysis methods are widely used in our country. But most of the curves using in the analysis have been developed in foreign countries. In this study we gathered the data of in situ pile load tests on domestic nine sites in order to derive load transfer curves of driven steel pipe piles. Then we derived average lines of $f/f_{max}$-w/D curves for sandy and clayey soils respectively, which are expressed by hyperbolic function. And the results using these curves and the results using TZPile 2.0 (Analysis program of pile) were compared and analyzed with the results of pile load tests on domestic 3 sites in order to ascertain the applicability of the curves. The results show that the load-settlement relations using the curves in this study are more similar to the measured data and more conservative than those using TZPile 2.0.

A study on the Consolidation Characteristic of Cohesive Soil by Plastic Index (소성지수에 따른 점성토의 압밀특성에 관한 연구)

  • Kim, Chan-Kee;Cho, Won-Beom;Lee, Seung-Lun;Choi, Woo-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.99-109
    • /
    • 2008
  • The standard consolidation tests using the incremental loading technique test (IL) were performed on remolded normal consolidation and undisturbed clay samples to find out the effects of plastic index and loading period on consolidation in this study. The remolded samples used were prepared by mixing Gunsan-Samangum clay with bentonite so that they may have plasticity indexes of 15, 30, 45, and 60%, respectively. The undisturbed clay samples were collected from Inchon, Kwangyang, and Uoolsan. The samples were tested at the condition of 4 different loading periods (1, 2, 4, and 8 days). Settlement, coefficient of consolidation, compression index, secondary compression index, and pore water pressure characteristics were investigated from the plastic index and loading period aspects, and the compression index, coefficient of consolidation, and secondary compression index were formulated in terms of the plastic index and loading. To verify the applicability of proposed equations, the settlements obtained from Terzaghi's theory, modified Cam-Clay model (elasto-plastic model), and the Sekiguchi model (elasto-viscoplastic mode) were compared with the test results. The comparison indicates that the Sekiguchi model incorporating the secondary consolidation characteristic well predicts the results.

Hydraulic Characteristics of Busan Clay in the Floodplain of the Nakdong River Delta (낙동강 삼각주 범람원에서 부산점토의 수리학적 특성)

  • Chung, Seong-Gyo;Lee, Nam-Ki;Lee, Jeong-Man;Min, Se-Chan;Hong, Yang-Pyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.47-61
    • /
    • 2010
  • To predict the settlement rate of a ground area that incorporates vertical drains, it is desirable to conduct various kinds of advanced field and laboratory tests for hydraulic properties. However, it is urgently needed to appropriately evaluate the hydraulic properties using the results of conventional soil tests which are extensively used for local practice. To achieve this purpose, a number of CPT dissipation test, laboratory permeability and consolidation tests were performed at five sites in the floodplain of the Nakdong River delta, and the test data were comprehensively analyzed. As a result, it is found that the coefficients of horizontal consolidation ($C_{h,NC}$) and permeability ($k_{h,OC}$) of the clay agreed well with those of the CPT-based methods proposed by Baligh and Levadoux (1986). The values of $C_{h,NC}$ and $k_{h,OC}$ were in the range of $0.4{\sim}3.0\;cm^2/sec$ and $0.40{\sim}2.50\;cm^2/sec$, each of which slightly increases or decreases with depth, respectively. It was also inferred that these trends seem to reflect the depositional environments of the clay.

Evaluation of Disturbance Effect of Penetrometer by Dissipation Tests (소산 실험을 이용한 관입 장비의 교란 효과 추정)

  • Yoon, Hyung-Koo;Hong, Sung-Jin;Lee, Woojin;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.339-347
    • /
    • 2008
  • The penetration of the probe produces the excess pore pressure due to the disturbance. The objective of this study is to evaluate the disturbance zone by using the dissipation of the excess pore water pressure, which was generated due to the penetration of the penetrometer with different size. The CPT, DMT and FVP (Field Velocity Probe) are adopted for in-situ tests. The tests are carried out in the construction site of north container pier of Busan new port, Korea where is accelerating the consolidation settlement using plastic board drains (PBD) and surcharges by crushed gravels. The coefficient of consolidation $(C_h)$ and soil properties are deduced by the laboratory test. The in-site tests are performed after the predrilling the surcharge zone at the point of 90% degree of consolidation. To minimize the penetration effect, the horizontal distance between penetration tests is 3m, the change of the pore pressure is monitored at the fixed depth of 24m. The coefficient of consolidation $(C_h)$ and the $t_{50}s$ are calculated based on the laboratory test and the in-situ data, respectively. The equvalent radi based on the $t_{50}$ shows that the FVP and the DMT produce the smallest and the greatest equivalent radi, respectively.

Tunnel Design/Construction Risk Assessment base on GIS-ANN (GIS-ANN 기반의 도심지 터널 설계/시공 위험도 평가)

  • Yoo, Chung Sik;Kim, Joo Mi;Kim, Sun Bin;Jung, Hye Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.63-72
    • /
    • 2006
  • Due to rapid development of many cities in Korea, many public facilities are required to be built as well as complementary civil structures. Consequently, a number of tunnel constructions are currently carried out throughout the country, and many more tunnels are planned to be constructed in the near future. Tunnel excavation in a city often causes serious damage to above-ground structures and sewer system because of unexpected settlement. In order to prevent the destruction, the tunnel, which bypasses the center of a city, must be specially evaluated for its influence to other structure. In addition, since a slight disturbance of above-ground structure causes numerous public complaints and civil appeals, it must be approached with different method than the mountain tunnels. In this paper, the evaluation method using the Artificial Neural Network (ANN) has been studied. The method begins with an analysis of the minimal sectional area. If its result can be used to approximate the general influence of the whole section, the actual evaluation using ANN will take off. In addition, it also studies the construction management method which reflects the real time soil behavior and environment influence during construction using Geographic Information System (GIS).

Assessment of potential carbon storage in North Korea based on forest restoration strategies (북한 산림복원 전략에 따른 탄소저장량 잠재성 평가)

  • Wonhee Cho;Inyoo Kim;Dongwook Ko
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.204-214
    • /
    • 2023
  • This study aimed to conduct a comprehensive assessment of the potential impact of deforestation and forest restoration on carbon storage in North Korea until 2050, employing rigorous analyses of trends of land use change in the past periods and projecting future land use change scenarios. We utilized the CA-Markov model, which can reflect spatial trends in land use changes, and verified the impact of forest restoration strategies on carbon storage by creating land use change scenarios (reforestation and non-reforestation). We employed two distinct periods of land use maps (2000 to 2010 and 2010 to 2020). To verify the overall terrestrial carbon storage in North Korea, our evaluation included estimations of carbon storage for various elements such as above-ground, below-ground, soil, and debris (including litters) for settlement, forest, cultivated, grass, and bare areas. Our results demonstrated that effective forest restoration strategies in North Korea have the potential to increase carbon storage by 4.4% by the year 2050, relative to the carbon storage observed in 2020. In contrast, if deforestation continues without forest restoration efforts, we predict a concerning decrease in carbon storage by 11.5% by the year 2050, compared to the levels in 2020. Our findings underscore the significance of prioritizing and continuing forest restoration efforts to effectively increase carbon storage in North Korea. Furthermore, the implications presented in this study are expected to be used in the formulation and implementation of long-term forest restoration strategies in North Korea, while fostering international cooperation towards this common environmental goal.

Analysis on Seismic Resistance Capacity of Hollow Concrete Block Reinforced Foundation Ground by Using Shaking Table Test (진동대 시험을 이용한 중공블록 보강 기초의 내진성능분석)

  • Shin, Eun-Chul;Lee, Yeun-Jeung;Yang, Tae Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.85-93
    • /
    • 2021
  • The seventy percentage of Korean Peninsular is covered by the mountainous area, and the depth of west sea and south sea is relatively shallow. Therefore, a large scale land reclamation from the sea has been implemented for the construction of industrial complex, residental area, and port and airport facilities. The common problem of reclaimed land is consisted of soft ground, and hence it has low load bearing capacity as well as excessive settlement upon loading on the ground surface. The hollow concrete block has been used to reinforce the loose and soft foundation soil where the medium-high apartment or one-story industrial building is being planned to be built. Recently the earthquakes with the magnitude of 4.0~5.0 have been occurred in the west coastal and southeast coastal areas. Lee (2019) reported the advantages of hollow concrete block reinforced shallow foundation through the static laboratory bearing capacity tests. In this study, the dynamic behavior of hollow concrete block reinforced sandy ground with filling the crushed stone in the hollow space has been investigated by the means of shaking table test with the size of shaking table 1000 mm × 1000 mm. Three types of seismic wave, that is, Ofunato, Hachinohe, Artificial, and two different accelerations (0.154 g, 0.22 g) were applied in the shaking table tests. The horizontal displacement of structure which is situated right above the hollow concrete block reinforced ground was measured by using the LVDT. The relative density of soil ground are varied with 45%, 65%, and 85%, respectively, to investigate the effectiveness of reinforcement by hollow block and measured the magnitude of lateral movement, and compared with the limit value of 0.015h (Building Earthquake Code, 2019). Based on the results of shaking table test for hollow concrete block reinforced sandy ground, honeycell type hollow block gives a large interlocking force due to the filling of crushed stone in the hollow space as well as a great interface friction force by the confining pressure and punching resistance along the inside and outside of hollow concrete block. All these factors are contributed to reduce the great amount of horizontal displacement during the shaking table test. Finally, hollow concrete block reinforced sandy ground for shallow foundation is provided an outstanding reinforced method for medium-high building irrespective of seismic wave and moderate accelerations.