• Title/Summary/Keyword: soil settlement

Search Result 924, Processing Time 0.03 seconds

Evaluation of Under-consolidation State in the Rapidly Deposited Ground (급속퇴적지반의 미압밀상태 평가)

  • 김현태;홍병만;백경종;김상규
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.89-98
    • /
    • 2003
  • A 5∼12m thick tideland has been created in front of a new sea-dyke due to the rapid sedimentation occurring for 22 years. It is confirmed from theoretical analysis and soil tests that the deposit is in under-consolidation state. An analysis shows that when the average sedimentation rate is over 1-5cm/year for a soil with $c_v$=0.0005-0.001$cm^2$/s, excess pore water pressure exists in the deposit. It is known that the lower sedimentation rate than average in the initial deposition stage results in lower dissipation of excess pore pressure and vice versa. It is emphasized that under-consolidation behavior should be taken account in settlement analysis because structures founded on such deposits give higher settlements.

Fast analytical estimation of the influence zone depth, its numerical verification and FEM accuracy testing

  • Kuklik, Pavel;Broucek, Miroslav;Kopackova, Marie
    • Structural Engineering and Mechanics
    • /
    • v.33 no.5
    • /
    • pp.635-647
    • /
    • 2009
  • For the calculation of foundation settlement it is recommended to take into account so called influence zone inside the subsoil bellow the foundation structure. Influence zone inside the subsoil is the region where the load has a substantial influence on the deformation of the soil skeleton. The soil skeleton is pre-consolidated or over consolidated due to the original geostatic stress state. An excavation changes the original geostatic stress state and it creates the space for the load transferred from upper structure. The theory of elastic layer in Westergard manner is selected for the vertical stress calculation. The depth of influence zone is calculated from the equality of the original geostatic stress and the new geostatic stress due to excavation combined with the vertical stress from the upper structure. Two close formulas are presented for the influence zone calculation. Using ADINA code we carried out several numerical examples to verify the proposed analytical formulas and to enhance their use in civil engineering practice. Otherwise, the FEM code accuracy can be control.

Numerical evaluation of buried composite and steel pipe structures under the effects of gravity

  • Toh, William;Tan, Long Bin;Tse, Kwong Ming;Raju, Karthikayen;Lee, Heow Pueh;Tan, Vincent Beng Chye
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.55-66
    • /
    • 2018
  • In this paper, the response of an underground fibreglass reinforced plastic (FRP) composite pipe system subjected to realistic loading scenarios that may be experienced by an actual buried pipeline is investigated. The model replicates an arbitrary site with a length of buried pipeline, passing through a $90^{\circ}$ bend and into a valve pit. Various loading conditions, which include effects of pipe pressurization, differences in response between stainless steel and fibreglass composite pipes and severe loss of bed-soil support are studied. In addition to pipe response, the resulting soil stresses and ground settlement are also analysed. Furthermore, the locations of potential leakage and burst have also been identified by evaluating the contact pressures at the joints and by comparing stresses to the pipe hoop and axial failure strengths.

Evaluation of Sand-Cone Method for Determination of Density of Soil (모래 치환법을 이용한 흙의 밀도 시험에 관한 고찰)

  • Park, Sung-Sik;Choi, Hyun-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.23-29
    • /
    • 2009
  • A sand-cone method is commonly used to determine the density of the compacted soils. This method uses a calibration container to determine the bulk-density of the sand for use in the test. The density of the test or compacted soil is computed on the assumption that the calibration container has approximately the same size or volume and allows the sand to fall approximately the same height as a test hole in the field. However, in most cases the size or shape of test hole is not exactly the same as the calibration container. There is certain discrepancy between sand particle settlement or arrangement in the laboratory calibration and in the field testing, which may cause an erroneous determination of in-situ density. The sand filling process is simulated in the laboratory and its effect on the determination of density is investigated. Artificially-made holes with different heights and bottom shapes are prepared to simulate various shapes of the test hole in the field. The sands with different gradations are used in the testing to examine how sand grain size influences the determination of density in the field.

  • PDF

An Experimental Study on the Settling Behavior of Marine Fluid Mud In the West Seaside of Korea (Banweol area) (반월식역 해성토의 침강특성에 관한 실험적 연구)

  • 김수삼
    • Geotechnical Engineering
    • /
    • v.3 no.3
    • /
    • pp.49-62
    • /
    • 1987
  • The settling behavior of marine fluid mud in the west seaside of Korea has been studied with theoretical analysis and experimental technique. This paper describes laboratorial experiments on the sedimentation and the deposition of soil particles in seawater, with measurement of velocity of interface, the water contents, the settlement. And the reseults are compared with an earlier theoretical research, the hindered settling theory of Kynch, McRoberts and Nixon. According to the results the process of Banweol mud sedimentation showed the typical mode of the hindered settling under the condition of initial water content, wo=1000%. Also, the falling rates of fluid mud interface from initial settling height vs. the rising rates of soil deposit from the bottom of the test tub were measured by the function of time, the correlati tranship of them demonstrated as a straight line and obtained an experimental formula.

  • PDF

A Study on the Ground Improvement by Compaction Grouting System (CGS에 의한 기초지반보강에 관한 연구)

  • 천병식;권형석
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.4
    • /
    • pp.9-19
    • /
    • 1999
  • The use of compaction grouting evolved in 1950's to correct structural settlement of buildings. Over the almost 50 years, the technology has been developed and is currently used in wide range of applications. Compaction grouting, the injection of a very stiff, 'zero-slump' mortar grout under relatively high pressure, displaces and compacts soils. It can effectively repair natural or man-made soil strength deficiencies in variety of soil formations. Major applications of compaction grouting include densifying loose soils or fill voids caused by sinkholes, poorly compacted fills, broken utilities, improper dewatering, or soft ground tunneling excavation. Other applications include preventing liquefaction, re-leveling settled structures, and using compaction grout bulbs as structural elements of minipiles or underpinning. In this paper, on the basis of the case history constructed in this year, a study has been performed to analyze the basic mechanism of the compaction grouting. Also, the effectiveness of the ground improvement and the bearing capacity of the compaction pile has been verified by the Cone Penetration Test(CPT) and Load Test. Relatively uniform compaction grouting column could be maintained by planning the quality control in the course of grouting. And, the Qualify Control Plan has been conceived using grout pressure, volume of grout and drilling depth.

  • PDF

Centrifuge Model Experiments on Behaviour Characterisitc in Forced Replacement Method (강제치환 거동특성에 관한 원심모형실험)

  • Lee, Jong-Ho;Park, Byung-Soo;Jeong, Gil-Soo;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.131-137
    • /
    • 2003
  • This thesis is results of centrifuge model experiments to investigate the behavior of replacement method in dredged and reclaimed ground. For experimental works, centrifuge model tests were carried out to investigate the behavior of replacement method in soft clay ground. Basic soil property tests were performed to find mechanical properties of clay soil sampled from the southern coast of Korea which was used for ground material in the centrifuge model tests. Reconstituted clay ground of model was prepared by applying preconsolidation pressure in 1g condition with specially built model container. Centrifuge model tests were carried out under the artificially accelerated gravitational level of 50g. Replacing material of leads having a certain degree of angularity was used and placed until the settlement of embankment of replacing material was reached to the equilibrium state. Vertical displacement of replacing material was monitored during tests. Depth and shape of replacement, especially the slope of penetrated replacing material and water contents of clay ground were measured after finishing tests. Model tests of investigating the stability of embankment after backfilling were also performed to simulate the behavior of the dike treated with replacement and backfilled with sandy material. As a result of centrifuge model test, the behavior of replacement, the mechanism of the replacing material being penetrated into clay ground and depth of replacement were evaluated.

  • PDF

Centrifuge Modeling of Soft Clay with Vertical Drains Considering the Centrifuge Similarity (상사성을 고려한 배수재 설치 연약점토 지반의 원심모델링)

  • Yoo, Nam-Jae;Hong, Young-Kil;Jeong, Gil-Soo;Cho, Han-Ki
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.111-120
    • /
    • 2007
  • This paper is results of experimental research on the effect of application of similarity related to permeability of soil on the consolidation behavior as centrifuge modeling of consolidation is performed with the centrifuge model facility. In this research, the permeability of soil was controlled by changing the viscosity of porewater as the mixed water with glycerin was used during the centrifuge model experiments. The effect of drainage path on consolidation was investigated by installing the vertical drains. A serise of centrifuge model tests with conditions of single vertical and radial horizontal drainage were carried out. Kaolinite and Jumunjin standard sand were used as soft clay and surcharges respectively during tests. For testing condition of single vertical drainage considering similarity of permeability, it was found that consolidation with mixed porewater with glycerin was delayed in comparisons sons with test results with water only. For conditions of horizontal drainage with vertical drains, a low permeability by changing the viscosity of pore water resulted in delayed degree of consolidation at an initial stage of consolidation. But, it predicted not much differences in settlement as long as the consolidation time was sufficiently long enough to finish consolidation. Consequently, it was found that similarity in permeability should be considered to be critical for the case of centrifuge model experiments related to consolidation with long drainage path.

  • PDF

Studies on the Engineering Characteristics of Alluvial Cla).e)- Deposits in the Estuary Area of Seomjin River (I) (섬진강하구유역의 충적점토에 대한 토질공학적 특성연구(I))

  • Yu, Neung-Hwan;Yu, Yeon-Taek;Park, Seung-Beom
    • Geotechnical Engineering
    • /
    • v.4 no.1
    • /
    • pp.37-48
    • /
    • 1988
  • This is a part of research projects to investigate the several significant statistical correlati- onships among the various physical and engineering properties of alluvial clayey deposits in the estuary area of the great fixe rivers through the South-West coastal districts where are expected to be developed as large ingustrial site or agricultual development projects. As a first trial, the statistical analyses through computer programs were carried out using the results of laboratory and field tests of 227 soil samples from the Seum-Jin river area. When the initial void ratio which plays crucial role to the settlement of foundation is more than 2.5, the compression indices of soil samples are remarkably scattered, but these indices, which are formulated as a general expression, tend to increase as increasing the clay content, liquid limit, plastic limit and initial void ratio.

  • PDF

Consideration of Failure Type on the Ground Excavation (지하굴착에 따른 붕괴유형에 대한 고찰)

  • Lee, Jung-Jae;Jung, Kyung-Sik;Lee, Chang-No
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.660-670
    • /
    • 2009
  • Neighboring construction becomes mainstream of Ground excavation in downtown area. This causes the displacement, deformation, stress condition, etc of the ground surroundings. Therefore Neighboring construction have an effect on Neighboring structure. All these years a lot of Neighboring construction carried out, and the accumulation of technology also get accomplished. But earth retaining structure collapse happens yet. Types of earth retaining structure collapse are 12. 1. Failure of anchor or strut system, 2. Insufficiency of penetration, 3. H-pile Failure on excessive bending moment, 4. Slope sliding failure, 5. Excessive settlement of the back, 6. Deflection of H-pile, 7. Joint failure of coupled H-pile, 8. Rock failure when H-pile penetration is rock mass, 9. Plane arrangement of support systems are mechanically weak, 10. Boiling, 11. Heaving, 12. Over excavation. But field collapses are difficult for classification according to the type, because collapse process are complex with various types. When we consider the 12 collapse field, insufficient recognition of ground condition is 4 case. Thorough construction management prevents from fault construction. For limitations of soil survey, It is difficult to estimate ground condition exactly. Therefore, it should estimate the safety of earth retaining system, plan for necessary reinforcement, according to measurement and observation continuously.

  • PDF