• Title/Summary/Keyword: soil remediation

Search Result 795, Processing Time 0.03 seconds

Optimum Condition of Soil Dispersion for Remediating Heavy Metal-Contaminated Soils using Wet Magnetic Separation (중금속 오염 토양 정화를 위한 습식자력선별법 사용 시 최적 토양분산 조건)

  • Chon, Chul-Min;Park, Jeong-Sik;Park, Sook-Hyun;Kim, Jae-Gon;Nam, In-Hyun
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.121-135
    • /
    • 2012
  • Soil dispersion and heavy metal leaching with two heavy metal-contaminated soils were studied to derive the optimal dispersion condition in the course of developing the remedial technology using magnetic separation. The dispersion solutions of pyrophosphate, hexametaphosphate, orthophosphate and sodium dodecylsulfate (SDS) at 1 - 200 mM and the pH of solutions was adjusted to be 9 - 12 with NaOH. The clay content of suspension as an indicator of dispersion rate and the heavy metal concentration of the solution were tested at the different pHs and concentrations of the dispersion solution during the experiment. The dispersion rate increased with increasing the pH and dispersion agent concentration of the solution. The dispersion efficiency of the agents showed as follows: pyrophosphate > hexametaphosphate > SDS > orthophosphate. Arsenic leaching was sharply increased at 50 mM of phosphates and 100 mM of SDS. The adsorption of $OH^-$, phosphates and dodecysulfate on the surface of Fe- and Mn-oxides and soil organic matter and the broken edge of clay mineral might decrease the surface charge and might increase the repulsion force among soil particles. The competition between arsenic and $OH^-$, phosphates and dodecylsulfate for the adsorption site of soil particles might induce the arsenic leaching. The dispersion and heavy metal leaching data indicate that pH 11 and 10 mM pyrophosphate is the optimum dispersion solution for maximizing dispersion and minimizing heavy metal leaching.

Chemical Properties and Heavy Metal Content of Forest Soils around Abandoned Coal Mine Lands in the Mungyeong Area (문경지역 폐탄광지 주변 산림토양의 화학적 성질 및 중금속 함량)

  • Min Jae-Gee;Park Eun-Hee;Moon Hyun-Shik;Kim Jong-Kab
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.4
    • /
    • pp.265-273
    • /
    • 2005
  • Chemical properties and heavy metal concentrations of forest soils of four abandoned coal mine lands affected by coal mining activities in the Mungyeong area were investigated to provide basic information for revegetation of abandoned coal mine lands. Soil pH in abandoned coal mine lands ranged from 5.30 to 6.76 it in the control site was 5.23. Contents of organic matter and total N in abandoned coal mine lands were $4.46\~7.19\%\;and\;0.07\~0.15\%$, respectively. Available P contents were 6.54 for A (Samchang), 6.52 for B (Bongmyeong),3.94 fur C (Kabjung), 5.45 mg/kg for D (Danbong coal mine land) and 5.25 mg/kg for the control site, which had a positive correlation with soil pH. Contents of exchangeable Ca, Mg, K and Na in abandoned coal mile lands averaged 196.1, 88.7, 88.2 and $10.2cmol^+/kg$, with a range of $132.1\~242.1,\;24.2\~138.\; 64.9\~120.8\;and\;8\~12.2cmol^+/kg$, respectively. Those of the control site were 192.8, 95.8, 104 and $21.2 cmol^+/kg$, respectively. Heavy metals such as Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn of forest soil in abandoned coal mine lands have a larger content than those of the control site. Al, Mn and fb content was especially high in abandoned coal mine lands. The Al content of forest soil in abandoned coal mine lands ranged from 397 to 917 ppm, which was considered to be high enough to inhibit tree growth. Therefore, it is suggested that soils of abandoned coal mine lands contaminated by mining activities need to be properly treated for remediation of environmental problems.

A Study on Oxidative Degradation of Chlorophenols by Heat Activated Persulfate (열적활성화된 과황산에 의한 염화페놀의 산화분해특성 연구)

  • Son, JiMin;Kwon, Hee-Won;Hwang, Inseong;Kim, Jeong-Jin;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.69-77
    • /
    • 2020
  • Oxidative degradation of phenol, three monochlorophenols (2-chlorophenol, 2-CP; 3-chlorophenol, 3-CP; 4-chlorophenol, 4-CP), four dichlorophenols (2,3-dichlorophenol, 2,3-DCP; 2,4-dichlorophenol, 2,4-DCP; 2,5-dichlorophenol, 2,5-DCP; 2,6-dichlorophenol, 2,6-DCP), and two trichlorophenols (2,4,5-trichlorophenol, 2,4,5-TCP; 2,4,6-trichlorophenol, 2,4,6-TCP) was conducted with heat activated persulfate. As the number of chlorinations increased, the reaction rate also increased. The reaction rate was relatively well fitted to the zero-order kinetic model, rather than the pseudo-first order kinetic model for the reactions at 60 ℃, which can be explained by insufficient activation of the persulfate at 60 ℃, and the oxidation reaction of 2,4,6-TCP at 70 ℃ was relatively well fitted to the pseudo-first order kinetic model. The oxidation reaction rate generally increased with increase of persulfate concentration in the solution. 2,6-dichloro-2,5-cyclohexadiene-1,4-dione was found as a degradation product in a GC/MS analysis. This compound is a non-aromatic compound, and one chlorine was removed. This result is similar to the result of previous studies. The current study proved that heat activated persulfate activation could be an alternative remediation technology for phenol and chlorophenols in soil and groundwater.

Groundwater Flow Modeling for a Finite Unconfined Sandy Aquifer in a Laboratory Scale (사질 자유면 대수층 모형에서의 지하수 모델링)

  • 이승섭;김정석;김동주
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.188-193
    • /
    • 1999
  • Transport of pollutants in aquifer largely depends on groundwater flow which is governed by aquifer hydraulic parameters. Determination of these parameters and associated groundwater modeling become essential for adequate remediation of contaminate groundwater. The objective of this paper is to analyze groundwater flow and determine the optimum hydraulic parameters by performing groundwater modeling based on sensitivity analysis for unconfined sandy gavel aquifer constructed in a laboratory scale under various boundary condition. Results revealed that the simulated drawdown was lower than the observed drawdown irrespective of boundary conditions. and specific yield (S$_{y}$) had less effect on the grondwater flow than permeability (K) in the aquifer. Water balance analysis showed that the measured drawdown in neighboring observation wells during pumping was higher than either simulated or recovered water table. The indicated that a difference might exist in the water tables between aquifer and wells. The difference was investigated by time domain reflectometry (TDR) measurements on water contents in the region of water table and capillary fringe, and explained by a delayed response of water table during gravitational drainage as the water table was lowered as a result of pumping.g.

  • PDF

Sulfate Reduction for Bioremediation of AMD Facilitated by an Indigenous Acid- and Metal-Tolerant Sulfate-Reducer

  • Nguyen, Hai Thi;Nguyen, Huong Lan;Nguyen, Minh Hong;Nguyen, Thao Kim Nu;Dinh, Hang Thuy
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1005-1012
    • /
    • 2020
  • Acid mine drainage (AMD) has been a serious environmental issue that threatens soil and aquatic ecosystems. In this study, an acid-tolerant sulfate-reducing bacterium, strain S4, was isolated from the mud of an AMD storage pond in Vietnam via enrichment in anoxic mineral medium at pH 5. Comparative analyses of sequences of the 16S rRNA gene and dsrB gene involved in sulfate reduction revealed that the isolate belonged to the genus Desulfovibrio, and is most closely related to Desulfovibrio oxamicus (with 99% homology in 16S rDNA sequence and 98% homology in dsrB gene sequence). Denaturing gradient gel electrophoresis (DGGE) analyses of dsrB gene showed that strain S4 represented one of the two most abundant groups developed in the enrichment culture. Notably, strain S4 was capable of reducing sulfate in low pH environments (from 2 and above), and resistance to extremely high concentration of heavy metals (Fe 3,000 mg/l, Zn 100 mg/l, Cu 100 mg/l). In a batch incubation experiment in synthetic AMD with pH 3.5, strain S4 showed strong effects in facilitating growth of a neutrophilic, metal sensitive Desulfovibrio sp. strain SR4H, which was not capable of growing alone in such an environment. Thus, it is postulated that under extreme conditions such as an AMD environment, acid- and metal-tolerant sulfate-reducing bacteria (SRB)-like strain S4 would facilitate the growth of other widely distributed SRB by starting to reduce sulfate at low pH, thus increasing pH and lowering the metal concentration in the environment. Owing to such unique physiological characteristics, strain S4 shows great potential for application in sustainable remediation of AMD.

Sequential Extraction of Heavy Metals in Soils and A Case Study (토양중의 중금속 연속추출방법과 사례연구)

  • Jung, Myung Chae
    • Economic and Environmental Geology
    • /
    • v.27 no.5
    • /
    • pp.469-477
    • /
    • 1994
  • Many researchers have investigated most representative sequential extraction method using various reagents for determining the chemical forms of metals in soils and sediments. In this paper, a newly modified method for sequential extraction scheme based on Tessier's method by Environmental Geochemistry Research, Centre for Environmental Technology, Imperial College, was introduced and examined. In comparison with Tessier's method, originally designed for sediment analysis by Atomic Absorption Spectrophotometry (AAS), the sequential extraction scheme has been developed for the multi-element analysis by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). The partitioning of particulate trace elements was classified into five fractions: (i) exchangeable, (ii) bound to carbonates or specially adsorbed, (iii) bound to Fe and Mn oxides, (iv) bound to organic matter and sulphides and (v) residuals. The experimental results of the pilot study for in-house reference material (HRM2) and certified international standard reference material (SRM2711) using the modified method showed not only reasonable precision and accuracy but also acceptable overall recovery rates. In addition, mine dump soils sampled in the Dalsung Cu-W mine, Korea were prepared and sequentially extracted using the method. Most of Cu was bound to organic matter/sulphides and residual fractions. The dominant fraction of soil Pb and Zn in the study area was found in the residuals. The fraction of Cd showed a wide variation between samples and could be found bound to the carbonates or specially adsorbed, oxides, organic fraction and residuals. The recovery rates of Cd, however, were poor due to relatively low Cd concentrations in soils. The heavy metals in these mine dumps appear to be in the more inert forms and should not be readily bioavailable. The soils, however, had very low pH values (average 4.1) and had sandy textures; consequently, rapid infiltration of rainfall may increase leaching of Zn and Cd which were found to be around 5 to 10% of the exchangeable fraction. As a result of the investigation of this study, it has been strongly recommended that these mine waste materials should still be considered a significant contaminant source and will need environmental remediation to prevent pollutants from being released into the environment.

  • PDF

Conceptual Design of a Cover System for the Degmay Uranium Tailings Site (Degmay 우라늄광산 폐기물 부지 복원을 위한 복토층 개념설계)

  • Saidov, Vaysidin;Kessel, David S.;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.189-200
    • /
    • 2016
  • The Republic of Tajikistan has ten former uranium mining sites. The total volume of all tailings is approximately 55 million tonnes, and the covered area is more than 200 hectares. The safe management of legacy uranium mining and tailing sites has become an issue of concern. Depending on the performance requirements and site-specific conditions (location in an arid, semiarid or humid region), a cover system for uranium tailings sites could be constructed using several material layers using both natural and man-made materials. The purpose of this study is to find a feasible cost-effective cover system design for the Degmay uranium tailings site which could provide a long period (100 years) of protection. The HELP computer code was used in the evaluation of potential Degmay cover system designs. As a result of this study, a cover system with 70 cm thick percolation layer, 30 cm thick drainage layer, geomembrane liner and 60 cm thick barrier soil layer is recommended because it minimizes cover thickness and would be the most cost-effective design.

Numerical Modeling of Soil Liquefaction at Slope Site (사면에서 발생하는 액상화 수치해석)

  • Park, Sungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.133-143
    • /
    • 2006
  • A fully coupled effective stress dynamic analysis procedure for modeling seismic liquefaction on slope is presented. An elasto-plastic formulation is used for the constitutive model UBCSAND in which the yield loci are radial lines of constant stress ratio and the flow rule is non-associated. This is incorporated into the 2D version of Fast Lagrangian Analysis of Continua (FLAC) by modifying the existing Mohr-Coulomb model. This numerical procedure is used to simulate centrifuge test data from the Rensselaer Polytechnic Institute (RPI). UBCSAND is first calibrated to cyclic direct simple shear tests performed on Nevada sand. Both pre- and post-liquefaction behaviour is captured. The centrifuge test is then modeled and the predicted accelerations, excess porewater pressures, and displacements are compared with the measurements. The results are shown to be in general agreement. The procedure is currently being used in the design of liquefaction remediation measures for a number of dam, bridge, tunnel, and pipeline projects in Western Canada.

  • PDF

Isolation of Dibutyl Phthalate-Degrading Bacteria and Its Coculture with Citrobacter freundii CD-9 to Degrade Fenvalerate

  • Wu, Min;Tang, Jie;Zhou, Xuerui;Lei, Dan;Zeng, Chaoyi;Ye, Hong;Cai, Ting;Zhang, Qing
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.176-186
    • /
    • 2022
  • Continued fenvalerate use has caused serious environmental pollution and requires large-scale remediation. Dibutyl phthalate (DBP) was discovered in fenvalerate metabolites degraded by Citrobacter freundii CD-9. Coculturing is an effective method for bioremediation, but few studies have analyzed the degradation pathways and potential mechanisms of cocultures. Here, a DBP-degrading strain (BDBP 071) was isolated from soil contaminated with pyrethroid pesticides (PPs) and identified as Stenotrophomonas acidaminiphila. The optimum conditions for DBP degradation were determined by response surface methodology (RSM) analysis to be 30.9 mg/l DBP concentration, pH 7.5, at a culture temperature of 37.2℃. Under the optimized conditions, approximately 88% of DBP was degraded within 48 h and five metabolites were detected. Coculturing C. freundii CD-9 and S. acidaminiphila BDBP 071 promoted fenvalerate degradation. When CD-9 was cultured for 16 h before adding BDBP 071, the strain inoculation ratio was 5:5 (v/v), fenvalerate concentration was 75.0 mg/l, fenvalerate was degraded to 84.37 ± 1.25%, and DBP level was reduced by 5.21 mg/l. In addition, 12 fenvalerate metabolites were identified and a pathway for fenvalerate degradation by the cocultured strains was proposed. These results provide theoretical data for further exploration of the mechanisms used by this coculture system to degrade fenvalerate and DBP, and also offer a promising method for effective bioremediation of PPs and their related metabolites in polluted environments.

Improvement of cadmium tolerance and accumulation of Phragmites spp. Tabarka by ethyl methane sulfonate mutagenesis

  • Kim, Young-Nam;Kim, Jiseong;Lee, Jeongeun;Kim, Sujung;Lee, Keum-Ah;Kim, Sun-Hyung
    • Journal of Plant Biotechnology
    • /
    • v.47 no.4
    • /
    • pp.324-329
    • /
    • 2020
  • Reed (Phragmites spp.) is a rhizomatous plant of the Poaceae family and is known as high tolerant plant to heavy metal contaminants. This plant is widely recognized as a Cd root-accumulator, but improved heavy metal tolerance and uptake capacity are still required for phytoremediation efficiency. To enhance capacity of hyperaccumulator plants, ethyl methane sulfonate (EMS) as chemical mutagen has been introduced and applied to remediation approaches. This study aimed to select EMS-mutagenized reeds representing high Cd resistance and large biomass and to investigate their ability of Cd accumulation. After 6 months cultivation of M2 mutant reeds under Cd stress conditions (up to 1,500 µM), we discovered seven mutant individuals that showed good performances like survivorship, vitality, and high accumulation of Cd, particularly in their roots. Compared to wild type (WT) reeds as control, on average, dry weight of mutant type (MT) reeds was larger by 2 and 1.5 times in roots and shoots, respectively. In addition, these mutant plants accumulated 6 times more Cd, mostly in the roots. In particular, MT8 reeds showed the greatest ability to accumulate Cd. These results suggest that EMS mutagenesis could generate hyperaccumulator plants with enhanced Cd tolerance and biomass, thereby contributing to improvement of phytoremediation efficiency in Cd-contaminated soil or wastewater. Further studies should focus on identifying Cd tolerance mechanisms of such EMS-mutagenized plants, developing techniques for its biomass production, and investigating the practical potential of the EMS mutants for phytoremediation.