• Title/Summary/Keyword: soil quality

Search Result 2,327, Processing Time 0.027 seconds

Chemical Indices of Soil Quality: Effects of Heavy Metal Additions

  • Yang, Jae-E.;Choi, Moon-Heon;Lee, Wi-Young;Kim, Jeong-Je;Jung, Yeong-Sang
    • Applied Biological Chemistry
    • /
    • v.41 no.8
    • /
    • pp.587-594
    • /
    • 1998
  • The objective of this research was to characterize effects of Cu or Cd additions on chemistry of soil quality indices, such as pH, EC, cation distribution and buffering capacity. Metals were added at rates ranging from 0 to 400 mg $kg^{-1}$ of soil. Soil solution was sequentially extracted from saturated pastes using vacuum. Concentrations of Cu or Cd remaining in soil solutions were very low as compared to those added to the soils, warranting that most of the added metals were recovered as nonavailable fractions. Adsorption of the added metals released cations into soil solution causing increases of ionic strength of soil solution. At metal additions of $200{\sim}400\;mg\;kg^{-1}$, EC of soil solution increased to as much as $2{\sim}4\;m^{-1}$; salinity levels considered high enough to cause detrimental effects on plant production. More divalent cations than monovalent cations were exchanged by Cu or Cd adsorption. The nutrient buffering capacity of soils was decreased due to the metal adsorption and release of cations. pH of soil solution decreased linearly with increasing metal loading rates, with a decrement of up to 1.3 units at 400 mg Cu $kg^{-1}$ addition. Influences of Cu on each of these soil quality parameters were consistently greater than those of Cd. These effects were of a detrimental nature and large enough in most cases to significantly impact soil productivity. It is clear that new protocols are needed for evaluating potential effects of heavy metal loading of soils.

  • PDF

Spatial Pedological Mapping Using a Portable X-Ray Fluorescence Spectrometer at the Tallavera Grove Vineyard, Hunter Valley

  • Jang, Ho-Jun;Minasny, Budiman;Stockmann, Uta;Malone, Brendan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.635-643
    • /
    • 2016
  • Wine consumers desire to drink a high quality wine. For producing high quality wine, high quality soil is required. Conventionally, soil quality is assessed qualitatively. Using traditional laboratory methods, quantitative data can be obtained for management purpose, but it is time consuming and expensive. Therefore, new technology aims to address these limitations, namely portable X-Ray fluorescence spectrometers (pXRF). This instrument can be used directly in the field, requires no soil sample preparations, and can simultaneously measure a wide range of elements qualitatively that are useful for pedological studies. The chemical composition (Ca, Fe, Ti and Zr) of soils at Tallavera Grove vineyard in New South Wales, Australia, was studied using a pXRF. The analysis of the soil's elemental concentration (i.e. Ca and Fe) using pXRF supports management decisions. Measuring the soil's Ca concentration can be used to identify Ca-rich parent materials (limestone). The limestone indicates good soil conditions for vine production. Fe content was used to identify areas of texture-contrast soils or soil with accumulation of clays in the B horizon. In addition, a soil weathering index was calculated using elemental concentrations (i.e. Ti and Zr) to explore the history of soil formation for making decision of management. This index showed that the soil in the vineyard was affected by two processes: the deposition of materials from elsewhere (Aeolian transport or soil erosion) and mixing of materials from upslope.

Monitoring of Soil Chemical Properties and Pond Water Quality in Golf Courses after Application of SCB Liquid Fertilizer (골프코스에서 SCB저농도액비 살포에 따른 토양화학성과 연못수질의 모니터링)

  • Kim, Young-Sun;Ham, Suon-Kyu;Lim, Hye-Jung
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.1
    • /
    • pp.44-53
    • /
    • 2012
  • As SCB liquid fertilizer (SCB) produced from or out of livestock manure by slurry composting and biofiltration process was applied in golf course, the effect on soil properties and water quality was little investigated. This study was conducted to evaluate the effect of the SCB liquid fertilizer application on environment by monitoring chemical property of soil and water quality of pond as applied chemical fertilizer (CF) and SCB. SCB application rarely contaminated the soil and pond in golf course and decreased organic matter, CEC and Ca in soil and pH and T-N for water quality of pond. In correlation coefficient between soil property parameters, water quality parameters and water quality items, SCB applied in golf course decreased organic matter and CEC in soil and increased SAR in water quality (P<0.01). Nitrogen applied in golf course with SCB or CF was significantly related to T-N in the soil (P<0.01), but not significantly related to T-N in the pond water. These results showed that SCB application little contaminated soil and pond in golf course, and was expected to control of thatch in soil and algae in pond.

Relative Contribution rate on Soil Physico-chemical properties Related to Fruit Quality of 'Fuji' apple (사과 '후지' 품종의 품질에 미치는 토양이화학성의 상대적 기여도)

  • Kim, Seung-Heui;Choi, In-Myung;Han, Jeom-Wha;Cho, Jung-Gun;Son, In-Chang;Lim, Tae-Jun;Yun, Hea-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.722-726
    • /
    • 2011
  • The management standard on soil conditions in 'Fuji' apple to produce high quality fruit were not yet made. Therefore, this study was carried out to investigate the optimum soil environmental conditions of ten contents on production of high quality fruit in 'Fuji' apple. The soil and fruit characteristics were analyzed at total 60 orchards in major apple producing areas such as Chungju, Moonkyeung, yeongju, andong, yeosan and yeongcheon (10 orchards an area). The soil environmental factors affected fruit weight was highest relative contribution in saturated hydraulic conductivity of 36.5%. The bulk density and soil pH were low as relative contribution. The fruit weight was influenced by soil physical properties more than soil chemical properties. The soil environmental factors affected sugar content were hydraulic conductivity of 28.3% and organic matter content of 18.2%. The cultivation layer depth and soil pH were low as relative contribution. The fruit coloring was highest relative contribution in saturated hydraulic conductivity 55.9%. while soil pH, cation and soil texture were low. Fruit coloring was high influenced over 70% by soil physical properties. Finally, relative contribution on fruit quality related with sugar content, fruit weight, and coloring were high influenced by saturated hydraulic conductivity of 21.% and organic matter content of 18.7% but bulk density and cultivation layer depth were low relative contribution. The fruit growth and saturated hydraulic conductivity in 'Fuji' apple were very closely related. Therefore, orchard soil management to produce high quality fruit was very importance drainage management and organic matter application. We concluded that scientific soil management is possible by qualifiable of soil management factors.

Water Physiology of Panax ginseng III. Soil moisture, physiological disorder, diseases, insects and quality (인삼의 수분생리 III. 토양수분, 생리장해, 병해충과 품질)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.6 no.2
    • /
    • pp.168-203
    • /
    • 1982
  • Effects of soil moisture on growth of Panax ginseng, of various factors on soil moisture, and of moisture on nutrition, quality, physiological disorder, diseases and insect damage were reviewed. Optimum soil moisture was 32% of field capacity with sand during seed dehiscence, and 55-65% for plant growth in the fields. Optimum soil moisture content for growth was higher for aerial part than for root and higher for width than for length. Soil factors for high yield in ginseng fields appeared to be organic matter, silt, clay, agreggation, and porosity that contributed more to water holding capacity than rain fall did, and to drainage. Most practices for field preparation aimed to control soil moisture rather than nutrients and pathogens. Light intensity was a primary factor affecting soil moisture content through evaporation. Straw mulching was best for the increase of soil moisture especially in rear side of bed. Translocation to aerial part was inhibited by water stress in order of Mg, p, Ca, N an Mn while accelerated in order of Fe, Zn and K. Most physiological disorders(leaf yellowing, early leaf fall, papery leaf spot, root reddening, root scab, root cracking, root dormancy) and quality factors were mainly related to water stress. Most critical diseases were due to stress, excess and variation of soil water, and heavy rain fall. The role of water should be studied in multidiciplinary, especially in physiology and pathology.

  • PDF

Effect of Lime Amount and Application Time on Soil pH Change, Yield, and Quality of Leaf Tobacco (석회시용량과 시용시기가 경작지 토양산도 변화와 잎담배 수량 및 품질에 미치는 영향)

  • 정훈채;김용연;황건중
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.1
    • /
    • pp.61-70
    • /
    • 2000
  • This study was carried out to improve the tobacco field condition and to determine the effect of lime amount and application time on soil pH, yield, and quality of leaf tobacco. Lime was applied to the tobacco field by determined amounts according to different pH level. The changes of soil pH, growth of tobacco, yield, and quality of KF109 and Br21 tobacco were surveyed by time lapse. The target pH value in tobacco field soil can be reached at 6 weeks after lime application, and then the soil pH was lowered slightly after that time. The lime amount needed to reach target pH was decreased 40 % in the same tobacco field after 1 year. Though the initial growth rate of flue-cured tobacco in the field of pH 7.0 was lower than that of conventional tobacco field, the field of pH 7.0 showed the highest yield after the maximum growth stage. The quality of cured leaf tobacco in the field of pH 7.0 applied lime at spring season was slightly lowered compared with that in conventional. This results indicated that the best pH condition in tobacco field for the best tobacco growth was 6.5 and the proper time of lime application was fall season of previous year by application of the whole quantity.

  • PDF

Influence of Forest Practices on Soil Physical Properties and Facility of Purifying Water Quality in Pinus rigida Stands (리기다소나무 임분에서 산림관리작업이 토양의 물리성 및 산림의 수질정화기능에 미치는 영향)

  • Park, Jae-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.2
    • /
    • pp.61-70
    • /
    • 2007
  • This study aims to clarify the effect of forest management practices(thinning and pruning) on soil physical properties and water quality to get the fundamental information on the facility of purifying water quality after forestry practices. Rainfall, throughfall, stemflow, soil and stream water were sampled at the study site which consists of Pinus rigida in Jinju National University Experimental Forest for 4 years from Mar. 1, 2002 to Nov. 30, 2006. Averaged tree height of the management site increased by 1.6m, compared to the value of the non-management site in Pinus rigida. Increment of averaged D. B. H. at the management site showed 4.2cm more in Pinus rigida compared with that at non-management sites. Mesopore ratios (pF2.7) and total porosities of A layer soil at the management site increased more than those at the non-management sites in both stands. Otherwise, soil bulk density resulted in being reversely. Water qualities of throughfall, stemflow and buffered soil water were influenced more positively by the management practice. The average electrical conductivity of stream water was $32.9{\mu}S/cm$ within the range of non-polluted stream water.

Chemical Assessment of Heavy Metal Contamination in Soil

  • Yang, Jae-E.;Choi, Moon-Heon
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.8-11
    • /
    • 1997
  • Current methods of evaluating soil contamination by heavy metals rely on analyzing samples for total contents of metals or quantities recovered in various chemical extracting solutions. Results from these approaches provide only an index for evaluation because these methodologies yield values not directly related to bioavailability of soil-borne metals. In addition, even though concentrations of metals may be less than those required to cause toxic effects to biota, they may cause substantial effects on soil chemical parameters that determine soil quality and sustainable productivity. The objective of this research was to characterize effects of Cu or Cd additions on soil solution chemistry of soil quality indices, such as pH, EC, nutrient cation distribution and quantity/intensity relations (buffer capacity). Metals were added at rates ranging from 0 to 400 mg/kg of soil. Soil solution was sequentially extracted from saturated pastes using vacuum. Concentrations of Cu or Cd remaining in soil solutions were very low as compared to those added to the soils, warranting that most of the added metals were recovered as nonavailable (strongly adsorbed) fractions. Adsorption of the added metals released cations into soil solution causing increases of soluble cation contents and thus ionic strength of soil solution. At metal additions of 200~400 mg/kg, EC of soil solution increased to as much as 2~4 dS/m; salinity levels considered high enough to cause detrimental effects on plant production. More divalent cations (Ca+Mg) than monovalent cations (K+Na) were exchanged by Cu or Cd adsorption. The loss of exchangeable nutrient cations decreased long-term nutrient supplying capacity or each soil. At 100 mg/kg or metal loading, the buffering capacity was decreased by 60%. pH of soil solution decreased linearly with increasing metal loading rates, with a decrement of up to 1.3 units at 400 mg Cu/kg addition. Influences of Cu on each of these soil quality parameters were consistently greater than those of Cd. These effects were of a detrimental nature and large enough in most cases to significantly impact soil productivity. It is clear that new protocols are needed for evaluating potential effects of heavy metal loading of soils.

  • PDF

Development of Watershed-based Surface Soil Information System based on Web GIS (Web GIS기반의 수계기반 표토정보 시스템 개발)

  • Sung, Yunsoo;Lee, Dongjun;Lim, Kyoung Jae;Yang, Jae E;Lee, Seoro;Kim, Jonggun
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.94-103
    • /
    • 2017
  • Surface soil is one of the most important resources that have many functions for human needs such as conservation of water resource, purification of contaminated materials, and productivity of food or energy. However, the surface soil is a limited resource that cannot be recovered readily for a long time once it is lost by erosion. In Korea, the Ministry of Environment enacted the notification on the investigation of surface soil erosion and corresponding countermeasures. As the results, database of soil quality assess criteria (biomass, groundwater recharge, habitat, carbon storage, buffer, and soil loss) was established, and the web-based system that can evaluate surface soil conditions was developed. However, non-experts have difficulties in using the system because the system requires in-depth knowledge about soil qualities. In this study, the Web Geographic Information System (GIS) watershed-based surface soil information system was developed to improve usability of the system and accessibility of soil quaility database. The system provides the current condition of surface soil characteristics and GIS-based soil data at selected locations. The users are able to download soil quality data in different districts, watersheds, and special regions allocated by TauDEM module. The system developed in this study would valuable surface soil information for studies of soil quality and its environmental effects, and thereby contributing to establishing more appropriate and robust soil conservation laws.

Soil Quality Assessment for Environmentally Sound Agriculture in the Mountainous Soils - Physical Properties of the Soil and Collection of Sediment Data - (산지에서의 환경보전형 농업을 위한 토양의 질 평가 -토양의 물리적 특성과 유사자료 수집 -)

  • 최중대;김정제;양재의;정진철;윤세영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.4
    • /
    • pp.85-93
    • /
    • 1998
  • In the 2nd year study of a 5 year project to evaluate the soil quality and develop the best management practices for mountaineous soils, 11 runoff plots were treated and monitored with respect to physical property of the soil, runoff and sediment discharge, and the following results were obtained. 1. Bulk density and porosity did not show any siginificant difference between experimental treatments. 2. Runoff was basically dependent on the soil's physical property and tillage. Up-and-down plots showed the highest runoff while contour plots the lowest runoff. 3. Sediment yield in the mountaineous soils was directly related to tillage and residue cover. Residue covered plots showed the lowest sediment yield and up-and-down plots the highest sediment yield. And it is recommended that the best management practices using till_age and residue cover for the mountaineous soils must be developed to protect soil quality and maintain agricultural productivity.

  • PDF