• Title/Summary/Keyword: soil processes

Search Result 667, Processing Time 0.028 seconds

Review of Assessing Soil Quality Criteria for Environmentally-Sound Agricultural Practics and Future Use (환경적으로 안전한 농업과 미래용도를 위한 토질 기준 평가 검토)

  • Doug Young Chung
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.127-145
    • /
    • 1998
  • Unlike water or air quality standards that have been established by legislation using potential human health impact as the primary criterion, soil quality depends on the soils primary function and its relevant environmental factors, which is much more site- and soil specific. A properly characterized soil quality assessment system should serve as an indicator of the soil capacity to produce safe and nutritious food, to enhance human and animal health, and to overcome degrative processes. For our proposed example, a high quality soil with regard to maintaining an adequate soil productivity as a food production resources must accommodate soil and water properties, food chain, sustainability and utilization, environment, and profitability, that (i) facilitate water transfer and absorption, (ii) sustain plant growth, (iii) resist physical degradation of soil, (iv) produce a safe food resources, (v) cost-effective agricultural management. Possible soil quality indicators are identified at several levels within the framework for each of these functions. Each indicator is assigned a priority or weight that reflects its relative importance using a multi-objective approach based on principles of systems to be considered. To do this, individual scoring system is differentiated by the several levels from low to very high category or point scoring ranging from 0 to 10, And then weights are multiplied and products are summed to provide an overall soil quality rating based on several physical and chemical indicators. Tlne framework and procedure in developing the soil quality assessment are determined by using information collected from an alternative and conventional farm practices in the regions. The use of an expanded framework for assessing effects of other processes, management practices, or policy issues on soil quality is also considered. To develop one possible form for a soil quality index, we should permit coupling the soil characteristics with assessment system based on soil properties and incoming and resident chemicals. The purpose of this paper is to discuss approaches to defining and assessing soil quality and to suggest the factors to be considered.

  • PDF

Analysis of Soil Moisture Characteristics in Nut Pine Forest about Seasons and Soil Layers (잣나무림에서의 시기별 토층별 토양수분 특성분석)

  • Hong, Eun-Mi;Choi, Jin-Yong;Yoo, Seung-Hwan;Nam, Won-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.105-114
    • /
    • 2012
  • Soil moisture plays a pivotal role in hydrological processes, especially in the forest which covers more than 64% of the national land. Soil moisture was monitored to analyze soil moisture change characteristics in terms of time and soil layers in this study. 2 Years soil moisture change data was obtained from the experimental nut pine forest and statistical analysis including auto-correlation and cross-corelation among soil moisture data from different soil layers was conducted. Using the monitored soil moisture data, a relationship between soil moisture change and precipitation was analyzed and seasonal soil moisture change characteristics were analyzed. From the result of inter-relationships among soil layers in terms of season and time lag, soil moisture change characteristics in the nut pine forest were upper soil layers were much sensitive than lowers, and seasonal variation if soil moisture for upper soil layers were bigger than lowers showing low correlation with precipitation in winter and spring due to freezing and snowfalls.

Evaluation of geochemical processes affecting groundwater chemistry in Namwon, Korea

  • Kim, Kang-Joo;Natarajan Rajmohan;Kim, Hyung-Jung;Kim, Suk-Hwi;Hwang, Gab-Soo;Cho, Min-Joe;Lee, Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.334-337
    • /
    • 2004
  • Groundwater chemistry in Namwon area, Korea, was investigated to understand the contribution of geochemical processes on groundwater chemistry. For this study, a total of 279 groundwater samples were collected from 93 wells distributed over the study area. Higher concentrations of major ions are generally encountered in the shallow alluvial wells, suggesting that these chemicals are originated from the surface contamination sources. Mass balance analysis based on reaction stoichiometry reveals that the water chemistry is regulated by three major chemical processes: weathering of silicate/ carbonate minerals, input of C1/SO$_4$ salts, and nitrate generating processes. The results show that mineral weathering is the most dominating factor regulating the groundwater chemistry. However, the groundwaters with the higher salt concentration indicate the larger mineral weathering effect, suggesting that some part of the mineral weathering effect is also associated with the anthropogenic activities such as limes applied to the cultivated lands, carbonates (CaCO$_3$) in the cement materials.

  • PDF

Overview of Rosetta for Estimation of Soil Hydraulic Parameters using Support Vector Machines (보조벡터기로를 사용한 토양수리계수 추정을 위한 로제타 개관)

  • Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.8-13
    • /
    • 2009
  • Mathematical models have become increasingly popular in both research and management problems involving flow and transport processes in the subsurface. Rosetta is a program to estimate unsaturated hydraulic properties from surrogate soil data such as soil texture data and bulk density. Models of this type are called pedotransfer functions (PTFs) as an alternative measurements since they translate basic soil data into hydraulic properties. These functions may be either measured directly or estimated indirectly through prediction from more easily measured data based using quasi-empirical models.

Organic Pollutant Transport in Unsaturated Porous Media by Atmospheric Breathing Processes( I ) - Partition Coefficient -

  • Ja-Kong;Lim, Jae-Shin;Do, Nam-Young
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1996.11a
    • /
    • pp.50-53
    • /
    • 1996
  • This paper reports the experimental results for the determination of the overall partition coefficient of VOCs in unsaturated soil, A chromatographic method was used for the determination of gaseous partition coefficients to natural soil under various water content conditions. The equilibrium vapor pressure of water over saturated salt solution was used to fix the relative humidity of the air and control the water content of the soil systems. The transport behavior was studied for dichloromethane, trichloroethane and dichlorobenzene pollutants, with log octanol-water partition coefficients(log $K_{ow}$ ) which range from 1.25 to 3.39, or water to soil partitioning which varies by 135 times; water solubility constants which vary by 3 times; and vapor pressures which range from 1 to 362 torr. Water content of the soil had a pronounced effect on the effective partition coefficient(between gas and soil + water stationary phase) as well as on the effective dispersion coefficient.

  • PDF

Environmental Geochemistry of Atmospheric Mercury: Its Backgriound Concentrations and Exchange Across the Air-Surface Interface (대기수은의 환경지화학: 배경농도측정 및 대기-지표면간의 교환작용)

  • 김기현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.189-198
    • /
    • 1996
  • Mercury (Hg) is ubiquitous throughout the earth's atmosphere. The uniqueness of its atmospheric geochemistry is well-known with the high environmental mobility and relatively long atmospheric residence time (c.a., 1 year) associated with its high chemical stability. Despite a growing recognition of the environmental significance of its global cycling, the prexisting Korean database for atmospheric Hg is extremely rare and confined to a number of concentration measurements conducted under relatively polluted urban atmospheric environments. To help activate the research on this suvject, an in-depth analysis on the current development in the measurements of atmospheric mercury and the associated fluxes has been made using the most using the most updated data ests reported worldwide. As a first step toward this purpose, the most reliable techniques commonly employed in the measurements of its concentration in the background atmosphere are introduced in combination with the flux measurement techniques over soil surface such as: dynamic enclosure (or field flux chamber) method and field micrometeorological method. Then the results derived using these measurement techniques are discussed and interpreted with an emphasis on its mobilization across the terrestrial biosphere and atmosphere interface. A unmber of factors including air/soil temperature, soil chemical composition, soil water content, and barometric pressure are found out to be influential to the rate and amount of such exchange processes. Although absolute magnitude of such exchange processes is insignificant relative to that of the major component like the oceanic environment, this exchange process is thought to be the the predominant natural pathway for both the mobilization and redistribution of atmospheric Hg on a local or regional scale.

  • PDF

Comparative Analyses for the Properties of Surface Soils from Various Land Uses in an Urban Watershed and Implication for Soil Conservation (도시 유역 내에서 토지이용에 따른 표토의 특성 비교 및 표토 보전을 위한 시사점)

  • Park, Eun-Jin;Kang, Kyu-Yi
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.3
    • /
    • pp.106-115
    • /
    • 2009
  • Knowledge about how to stabilize soil structure is essential to conserve soil systems and maintain various biogeochemical processes through soil. In urban area, soil structural systems are degraded with inappropriate management and land use and become vulnerable to erosion. We analyzed the structural changes of surface soils with different land uses, i.e., forests, parks, roadside green area, riparian area, and farmlands (soybean fields), in the Anyang Stream Watershed in order to find the factors influencing the stability of soil structure and the implication for better management of surface soil. Soil organic matter contents of other land use soils were only 18~52% of that in forest soils. Soil organic matter increased the stability of soil aggregates in the order of soybean fields < roadsides < riparian < parks < forests and also reduced soil bulk density (increased porosity). The lowest stability of soybean field soils was attributed to the often disturbance like tillage and it was considered that higher stability of park soils comparing to other land use soils except forests was owing to the covering of soil surface with grass. These results suggest that supply of soil organic matter and protection of soil surface with covering materials are very important to increase porosity and stability of soil structure.

Impacts of temperature variations on soil organic carbon and respiration at soil erosion and deposition areas

  • Thet Nway Nyein;Dong Kook Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.447-447
    • /
    • 2023
  • Soil organic carbon (SOC) is a critical indicator of soil fertility. Its importance in maintaining ecological balance has received widespread attention. However, global temperatures have risen by 0.8℃ since the late 1800s due to human-induced greenhouse gas emissions, resulting in severe disruptions in SOC dynamics. To study the impacts of temperature variations on SOC and soil respiration, we used the Soil Carbon and Landscape co-Evolution (SCALE) model, which was capable of estimating the spatial distribution of soil carbon dynamics. The study site was located at Heshan Farm (125°20'10.5"E, 49°00'23.1"N), Nenjiang County in Heilongjiang Province, Northeast China. We validated the model using observed soil organic carbon and soil respiration in 2015 and achieved excellent agreement between observed and modeled variables. Our results showed considerable influences of temperature increases on SOC and soil respiration rates at both erosion and deposition areas. In particular, changes in SOC and soil respiration at the deposition area were greater than at the erosion area. Our study highlights that the impacts of temperature elevations are considerably dependent on soil erosion and deposition processes. Thus, it is important to implement effective soil conservation strategies to maintain soil fertility under global warming.

  • PDF

Assessment of Slope Stability With the Uncertainty in Soil Property Characterization (지반성질 불확실성을 고려한 사면안정 해석)

  • 김진만
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.123-130
    • /
    • 2003
  • The estimation of key soil properties and subsequent quantitative assessment of the associated uncertainties has always been an important issue in geotechnical engineering. It is well recognized that soil properties vary spatially as a result of depositional and post-depositional processes. The stochastic nature of spatially varying soil properties can be treated as a random field. A practical statistical approach that can be used to systematically model various sources of uncertainty is presented in the context of reliability analysis of slope stability Newly developed expressions for probabilistic characterization of soil properties incorporate sampling and measurement errors, as well as spatial variability and its reduced variance due to spatial averaging. Reliability analyses of the probability of slope failure using the different statistical representations of soil properties show that the incorporation of spatial correlation and conditional simulation leads to significantly lower probability of failure than obtained using simple random variable approach.

  • PDF

Physically-based Soil-water Erosion Model - Based on Hairsine and Rose's Concept - (물리적인 기반의 토양침식모델 개발)

  • 김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.82-89
    • /
    • 1997
  • A physically-based soil-water erosion model with simple hydrology and Rose & Hairsine's erosion concept is described, and was implemented in the form of computer program. The model derived from the concept of stream power(Bagnold, 1977) considers settling velocity characteristics of the soil and distinguishes between the processes of entrainment and re-entrainment. It deals separately with rill flow and sheet flow, handles vegetation in terms of soil contact cover, and has the ability to simulate soil movement on nonuniform slopes. The model predicted sediment concentrations reasonably with the results of Mclsaac et al. (1990). It showed a capability to quantitatively predict the movement of soil on uniform and nonuniform slopes. Among the model parameters, soil depositability $({\phi})$ was the most sensitive from the sensitivity analysis.

  • PDF