• 제목/요약/키워드: soil pressure

검색결과 1,637건 처리시간 0.029초

Evaluation of the influence of interface elements for structure - isolated footing - soil interaction analysis

  • Rajashekhar Swamy, H.M.;Krishnamoorthy, A.;Prabakhara, D.L.;Bhavikatti, S.S.
    • Interaction and multiscale mechanics
    • /
    • 제4권1호
    • /
    • pp.65-83
    • /
    • 2011
  • In this study, two extreme cases of compatibility of the horizontal displacements between the foundation and soil are considered, for which the pressure and settlements of the isolated footings and member end actions in structural elements are obtained using the three dimensional models and numerical experiments. The first case considered is complete slip between foundation and soil, termed as the un-coupled analysis. In the second case of analysis, termed as the coupled analysis, complete welding is assumed of joints between the foundation and soil elements. The model and the corresponding computer program developed simulate these two extreme states of compatibility giving insight into the variation of horizontal displacements and horizontal stresses and their intricacies, for evaluation of the influence of using the interface elements in soil-structure interaction analysis of three dimensional multiscale structures supported by isolated footings.

Physical modelling of soil liquefaction in a novel micro shaking table

  • Molina-Gomez, Fausto;Caicedo, Bernardo;Viana da Fonseca, Antonio
    • Geomechanics and Engineering
    • /
    • 제19권3호
    • /
    • pp.229-240
    • /
    • 2019
  • The physical models are useful to understand the soil behaviour. Hence, these tools allow validating analytical theories and numerical data. This paper addresses the design, construction and implementation of a physical model able to simulate the soil liquefaction under different cyclic actions. The model was instrumented with a piezoelectric actuator and a set of transducers to measure the porewater pressures, displacements and accelerations of the system. The soil liquefaction was assessed in three different grain size particles of a natural sand by applying a sinusoidal signal, which incorporated three amplitudes and the fundamental frequencies of three different earthquakes occurred in Colombia. In addition, such frequencies were scaled in a micro shaking table device for 1, 50 and 80 g. Tests allowed identifying the liquefaction susceptibility at various frequency and displacement amplitude combinations. Experimental evidence validated that the liquefaction susceptibility is higher in the fine-grained sands than coarse-grained sands, and showed that the acceleration of the actuator controls the phenomena trigging in the model instead of the displacement amplitude.

Response of circular footing on dry dense sand to impact load with different embedment depths

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Earthquakes and Structures
    • /
    • 제14권4호
    • /
    • pp.323-336
    • /
    • 2018
  • Machine foundations with impact loads are common powerful sources of industrial vibrations. These foundations are generally transferring vertical dynamic loads to the soil and generate ground vibrations which may harmfully affect the surrounding structures or buildings. Dynamic effects range from severe trouble of working conditions for some sensitive instruments or devices to visible structural damage. This work includes an experimental study on the behavior of dry dense sand under the action of a single impulsive load. The objective of this research is to predict the dry sand response under impact loads. Emphasis will be made on attenuation of waves induced by impact loads through the soil. The research also includes studying the effect of footing embedment, and footing area on the soil behavior and its dynamic response. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of different soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depths within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil in addition to soil pressure gauges. It was concluded that increasing the footing embedment depth results in increase in the amplitude of the force-time history by about 10-30% due to increase in the degree of confinement. This is accompanied by a decrease in the displacement response of the soil by about 40-50% due to increase in the overburden pressure when the embedment depth increased which leads to increasing the stiffness of sandy soil. There is also increase in the natural frequency of the soil-foundation system by about 20-45%. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency. Moreover, the soil density increases with depth because of compaction, which makes the soil behave as a solid medium. Increasing the footing embedment depth results in an increase in the damping ratio by about 50-150% due to the increase of soil density as D/B increases, hence the soil tends to behave as a solid medium which activates both viscous and strain damping.

A Simplified Numerical Model for an Integral Abutment Bridge Considering the Restraining Effects Due to Backfill

  • Hong, Jung-Hee;Jung, Jae-Ho;You, Sung-Kun;Yoon, Soon-Jong
    • 콘크리트학회논문집
    • /
    • 제15권5호
    • /
    • pp.759-767
    • /
    • 2003
  • This paper presents the simplified but more rational analysis method for the prediction of additional internal forces induced in integral abutment bridges. These internal forces depend upon the degree of restraint provided tc the deck by the backfill soil adjacent to the abutments and piles. In addition, effect of the relative flexural stiffness ratio among pile foundations, abutment, and superstructure on the structural behavior is also an important factor. The first part of the paper develops the stiffness matrices, written in terms of the soil stiffness, for the lateral and rotational restraints provided by the backfill soil adjacent to the abutment. The finite difference analysis is conducted and it is confirmed that the results are agreed well with the predictions obtained by the proposed method. The simplified spring model is used in the parametric study on the behavior of simple span and multi-span continuous integral abutment PSC beam bridges in which the abutment height and the flexural rigidity of piles are varied. These results are compared with those obtained by loading Rankine passive earth pressure according to the conventional method. From the results of parametric study, it was shown that the abutment height, the relative flexural rigidity of superstructure and piles, and the earth pressure induced by temperature change greatly affect the overall structural response of the bridge system. It may be possible to obtain more rational and economical designs for integral abutment bridges by the proposed method.

캔틸레버 옹벽의 거동에 대한 수치해석적 연구 (Numerical Analysis on Behavior of Cantilever Retaining Walls)

  • 장인성;정충기;김명모
    • 한국지반공학회지:지반
    • /
    • 제12권4호
    • /
    • pp.75-86
    • /
    • 1996
  • 현재 옹벽해석에 사용되는 Rankine이나 Coulomb의 토압산정방법은 벽체 뒤의 토사가 파괴상태에 도달하였다는 가정조건에 근거하고 있으며, 이를 위해서는 충분한 횡방향 변위가 발생하여야 한다. 최근의 현장시험 등을 통한 많은 연구에서는 옹벽에 작용하는 수평주동토압이 Rankine이나 Coulomb의 토압보다 크게 나타나고 있음을 보여주고 있으며, 이는 발생 수평변위량과 밀접한 관계가 있는 것으로 판단된다. 본 연구에서는 Drucker Prayer의 지반구성모델을 이용한 유한요소해석을 통하여 캔틸레버식 옹벽의 벽체 지주와 가상배면에 작용하는 수평주동토압을 발생변위와 함께 분석하였으며, 아울러 경사진 뒤채움이 수평주동토압에 미치는 영향도 검토하였다. 그 결과 옹벽에 작용하는 수평주동 토압은 발생변위와 밀접한 관계가 있으며, Rankine과 Coulomb의 방법은 작용수평주동토압을 과소평가하고, 경사진 뒤채움의 수평주동토압증가효과도 과소평가함을 확인하였다. 그리고 본 해석결과를 토대로 수평주동토압을 간편하게 산출할 수 있는 새로운 방법을 제안하였다.

  • PDF

다층지반 하에서 수평하중을 받는 말뚝의 회전점 (Rotation Point of Laterally Loaded Pile Under Multi Layered Soil)

  • 강병준;경두현;홍정무;이준환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.708-712
    • /
    • 2008
  • Piles and pile foundations have been in common use since very early times. Usually function of piles is to carry load to a depth at which adequate support is available. Another important use of piles is to furnish lateral support and nowadays it is getting highlighted due to the wind load, lateral action of earthquake, and so on. After Broms (1964), many researchers have been suggested methods for estimating lateral capacity of pile. But each method assumes different earth pressure distribution and lateral earth pressure coefficient and it gives confusion to pile designers. Lateral earth pressure, essential in lateral capacity estimation, influenced by pile's behavior under lateral load. Prasad and Chari (1999) assumed the rotation point of pile and suggested an equation of ultimate lateral load capacity. In this study, we investigate the depth of rotation point in both homogeneous soil and multi layered soil, and compare to the estimation value by previous research. To model the pile set up in the sand, we use the chamber and small scale steel pile, and rain drop method. Test results show the rotation point is formed where the Prasad and Chari's estimation value, and they also show multi layered condition affects to location of rotation point to be scattered.

  • PDF

The characteristics of subgrade mud pumping under various water level conditions

  • Ding, Yu;Jia, Yu;Wang, Xuan;Zhang, Jiasheng;Luo, Hao;Zhang, Yu;Chen, Xiaobin
    • Geomechanics and Engineering
    • /
    • 제30권2호
    • /
    • pp.201-210
    • /
    • 2022
  • This paper presents a study regarding the influence of various water levels on the characteristics of subgrade mud pumping through a self-developed test instrument. The characteristics of mud pumping are primarily reflected by axial strain, excess pore water pressure, and fine particle migration. The results show that the axial strain increases nonlinearly with an increase in cycles number; however, the increasing rate gradually decreases, thus, an empirical model for calculating the axial strain of the samples is presented. The excess pore water pressure increases rapidly first and then decreases slowly with an increase in cycles number. Furthermore, the dynamic stress within the soil first rapidly decreases and then eventually slows. The results indicate that the axial strain, excess pore water pressure, and the height and weight of the migrated fine particles decrease significantly with a low water level. In this study, when the water level is 50 mm lower than the subgrade soil surface, the issue of subgrade mud pumping no longer exist.

A hybrid MC-HS model for 3D analysis of tunnelling under piled structures

  • Zidan, Ahmed F.;Ramadan, Osman M.
    • Geomechanics and Engineering
    • /
    • 제14권5호
    • /
    • pp.479-489
    • /
    • 2018
  • In this paper, a comparative study of the effects of soil modelling on the interaction between tunnelling in soft soil and adjacent piled structure is presented. Several three-dimensional finite element analyses are performed to study the deformation of pile caps and piles as well as tunnel internal forces during the construction of an underground tunnel. The soil is modelled by two material models: the simple, yet approximate Mohr Coulomb (MC) yield criterion; and the complex, but reasonable hardening soil (HS) model with hyperbolic relation between stress and strain. For the former model, two different values of the soil stiffness modulus ($E_{50}$ or $E_{ur}$) as well as two profiles of stiffness variation with depth (constant and linearly increasing) were used in attempts to improve its prediction. As these four attempts did not succeed, a hybrid representation in which the hardening soil is used for soil located at the highly-strained zones while the Mohr Coulomb model is utilized elsewhere was investigated. This hybrid representation, which is a compromise between rigorous and simple solutions yielded results that compare well with those of the hardening soil model. The compared results include pile cap movements, pile deformation, and tunnel internal forces. Problem symmetry is utilized and, therefore, one symmetric half of the soil medium, the tunnel boring machine, the face pressure, the final tunnel lining, the pile caps, and the piles are modelled in several construction phases.

석탑 기단부 적심구성방법에 대한 특성 고찰 - $7{\sim}8$세기 석탑 중 해체 수리한 석탑을 중심으로 - (A study on characteristics of composition method of inner foundation in stone stupa)

  • 정해두;장석하
    • 건축역사연구
    • /
    • 제16권5호
    • /
    • pp.55-66
    • /
    • 2007
  • Through analysing on construction cases of stupa built in A.D. 7,8th, I have researched about these : constructive methods of inner soil of stupa, spatial compositions, characteristics of structures, arrangements of inner soil and etc. And cases analysed are six ; Mireuksajiseoktap(stone pagoda of Mireuksa Temple site), Gameunsajisamcheumgseoktap(three storied stone pagoda of Gameunsa Temple site), Goseonsajisamcheungseoktap(three storied stone pagoda of Goseonsa Temple site), Wolseong nawolliocheungseoktap(five storied stone pagoda in Nawonri, Wolseong), Guksagokseoktap(three storied stone pagoda in Guksa valley), Giamgokseoktap(three storied stone pagoda in Giam valley). Additionally we researched about inner soil of Sacheonwangsaji tapji(basement of stone stupa site in Sacheonwang Temple site) to speculate on composition of Synthetically, the foundation could be divided as core space and outer space. ; the former as structural function and the latter as ornamental function. And the core area could be divided again as center column space and buffer space. The relationship between core spaces and its formation are as belows; First, according to the area of foundation and scale of stone pagoda, formations of core are differed. As the scale of stone pagoda goes bigger, and the area of foundation goes larger, the structure of stone pagoda comprised by center column type and layered-core which endure upper load independently. On the contrary, as the scale of stone pagoda goes smaller, and the area of foundation goes lesser, the structure of stone pagoda tend to use only center column to endure upper part. Second, spatial composition of core area is comprised as two spaces, one which endure upper load and buffer space which absorb side pressure and upper pressure. The buffer space tend to be used in case of those structures which could not endure side pressure or have lots of joint. In some cases, it was located below the cover stone of foundation and gained upper load. And in case that have not gained pressure from side stone, the buffer space are comprised by smalle stone or roof tile to get structural supplement.

  • PDF

정규압밀점토에서의 피에조 콘 관입에 의한 과잉간극수압에 대한 연구 (Initial Excess Pore Pressure Induced by Cone Penetration in Normally Consolidated Clays)

  • 임형덕;이우진;김대규
    • 한국지반공학회논문집
    • /
    • 제19권1호
    • /
    • pp.151-161
    • /
    • 2003
  • 본 연구에서는 콘 선단부 주변의 정규압밀점토 요소의 응력 경로가 삼축압축시험의 응력 경로와 같고 흙 요소를 탄성-완전 소성 재료로 가정하여, 콘 관입에 따른 과잉간극수압의 두 요소를 포함한 응력 상태를 평가할 수 있는 방법을 제안하였다. 제안된 방법은 루이지애나 주립대학교 모형 토조에서 수행된 소형 피에조 콘 시험결과에 적용하였다. 해석결과에 의하면, 제안된 방법에 의해 산정된 $\Delta{u}_{oct}$/ $\Delta{u}$ and $\Delta{u}_{shear}$/$\Delta{u}$ 는 오직 간극수압계수의 함수인 것으로 나타났다. 또한, 기존의 이론해에서는 비배수 전단강도, 강성지수와 같은 흙의 물성치 산정의 정확성에 따라 좌우되는 반면에 제안된 방법은 간극수압계수에 따른 일관된 결과를 주며 기존의 연구결과와도 일치하는 것으로 나타났다.