• 제목/요약/키워드: soil pressure

검색결과 1,626건 처리시간 0.027초

고압 유체 시료의 pH 및 알칼리도 측정 방법 : 가상 시료를 활용한 실용성 평가 (Method for Measuring pH and Alkalinity of High-Pressure Fluid Samples : Evaluation through Artificial Samples)

  • 송민석;문수현;채기탁;방준환
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제29권1호
    • /
    • pp.1-9
    • /
    • 2024
  • As part of monitoring technology aimed at verifying the stability of CO2 geologic storage and mitigating concerns about leakage, a method for measuring the pH and alkalinity of high-pressure fluid samples was established to obtain practical technology. pH measurement for high-pressure samples utilized a high-pressure pH electrode, and alkalinity was measured using the Gran titration method for samples collected with a piston cylinder sampler (PCS). Experimental samples, referencing CO2-rich water and CO2 geologic storage studies, were prepared in the laboratory. The PCS controls the piston, preventing CO2 degassing and maintaining fluid pressure, allowing mixing with KOH to fix dissolved CO2. Results showed a 6.1% average error in high-pressure pH measurement. PCS use for sample collection maintained pressure, preventing CO2 degassing. However, PCS-collected sample alkalinity measurements had larger errors than non-PCS measurements, limiting PCS practicality in monitoring field settings. Nevertheless, PCS could find utility in preprocessing for carbon isotope analysis and other applications. This research not only contributes to the field of CCS monitoring but also suggests potential applications in studies related to natural analogs of CCS, CO2-rock interaction experiments, core flooding experiments, and beyond.

Factors affecting particle breakage of calcareous soil retrieved from South China Sea

  • Wang, Xinzhi;Shan, Huagang;Wu, Yang;Meng, Qingshan;Zhu, Changqi
    • Geomechanics and Engineering
    • /
    • 제22권2호
    • /
    • pp.173-185
    • /
    • 2020
  • Calcareous soil is originated from marine biogenic sediments and weathering of carbonate rocks. The formation history for calcareous sediment includes complex physical, biological and chemical processes. It is preferably selected as the major fill materials for hydraulic reclamation and artificial island construction. Calcareous sands possess inter pores and complex shape are liable to be damaged at normal working stress level due to its fragile nature. Thus, the engineering properties of calcareous soil are greatly affected by its high compressibility and crushability. A series of triaxial shear tests were performed on calcareous sands derived from South China Sea under different test conditions. The effects of confining pressure, particle size, grading, compactness, drainage condition, and water content on the total amount of particle breakage for calcareous soil were symmetrically investigated. The test results showed that the crushing extent of calcareous sand with full gradation was smaller than that a single particle group under the same test condition. Large grains are cushioned by surrounding small particles and such micro-structure reduces the probability of breakage for well-graded sands. The increasing tendency of particle crushing for calcareous sand with a rise in confining pressure and compactness is confirmed. It is also evident that a rise in water content enhances the amount of particle breakage for calcareous sand. However, varying tendency of particle breakage with grain size is still controversial and requires further examination.

현업 기후예측시스템에서의 지면초기화 적용에 따른 예측 민감도 분석 (Application of Land Initialization and its Impact in KMA's Operational Climate Prediction System)

  • 임소민;현유경;지희숙;이조한
    • 대기
    • /
    • 제31권3호
    • /
    • pp.327-340
    • /
    • 2021
  • In this study, the impact of soil moisture initialization in GloSea5, the operational climate prediction system of the Korea Meteorological Administration (KMA), has been investigated for the period of 1991~2010. To overcome the large uncertainties of soil moisture in the reanalysis, JRA55 reanalysis and CMAP precipitation were used as input of JULES land surface model and produced soil moisture initial field. Overall, both mean and variability were initialized drier and smaller than before, and the changes in the surface temperature and pressure in boreal summer and winter were examined using ensemble prediction data. More realistic soil moisture had a significant impact, especially within 2 months. The decreasing (increasing) soil moisture induced increases (decreases) of temperature and decreases (increases) of sea-level pressure in boreal summer and its impacts were maintained for 3~4 months. During the boreal winter, its effect was less significant than in boreal summer and maintained for about 2 months. On the other hand, the changes of surface temperature were more noticeable in the southern hemisphere, and the relationship between temperature and soil moisture was the same as the boreal summer. It has been noted that the impact of land initialization is more evident in the summer hemispheres, and this is expected to improve the simulation of summer heat wave in the KMA's operational climate prediction system.

Three-dimensional numerical analysis of nonlinear phenomena of the tensile resistance of suction caissons

  • Azam, Arefi;Pooria, Ahad;Mehdi, Bayat;Mohammad, Silani
    • Geomechanics and Engineering
    • /
    • 제32권3호
    • /
    • pp.255-270
    • /
    • 2023
  • One of the main parameters that affect the design of suction caisson-supported offshore structures is uplift behavior. Pull-out of suction caissons is profoundly utilized as the offshore wind turbine foundations accompany by a tensile resistance that is a function of a complex interaction between the caisson dimensions, geometry, wall roughness, soil type, load history, pull-out rate, and many other parameters. In this paper, a parametric study using a 3-D finite element model (FEM) of a single offshore suction caisson (SOSC) surrounded by saturated soil is performed to examine the effect of some key factors on the tensile resistance of the suction bucket foundation. Among the aforementioned parameters, caisson geometry and uplift loading as well as the difference between the tensile resistance and suction pressure on the behavior of the soil-foundation system including tensile capacity are investigated. For this purpose, a full model including 3-D suction caisson, soil, and soil-structure interaction (SSI) is developed in Abaqus based on the u-p formulation accounting for soil displacement (u) and pore pressure, P.The dynamic responses of foundations are compared and validated with the known results from the literature. The paper has focused on the effect of geometry change of 3-D SOSC to present the soil-structure interaction and the tensile capacity. Different 3-D caisson models such as triangular, pentagonal, hexagonal, and octagonal are employed. It is observed that regardless of the caisson geometry, by increasing the uplift loading rate, the tensile resistance increases. More specifically, it is found that the resistance to pull-out of the cylinder is higher than the other geometries and this geometry is the optimum one for designing caissons.

불포화 사질토의 거동예측을 위한 구성식 개발 (Development of Constitutive Model for the Prediction of Behaviour of Unsaturated Granular Soil)

  • 송창섭;장병욱
    • 한국지반공학회지:지반
    • /
    • 제11권3호
    • /
    • pp.43-54
    • /
    • 1995
  • 실트질 모래를 재료로 삼축압축시험기를 개조하고, 삼축셀에 고압공기투과판을 부착하여 축변환기법에 의해 흡인력과 순평균응력을 조절하면서 등력압축시험과 전단시험을 행하여, 불포화 상태에 따른 토질정수의 변화를 규명하였으며, 함수상태의 변화에 따라 응력, 체적변화 등의 거동특성을 검토하였다. 실험의 결과에서 규명된 불포화토의 특성을 바탕으로, 불포화토의 응력성분을 고려하고, 수정 Cam -Clay 모델을 경계조건으로 하는 불포화토의 거동예측을 위한 구성식을 개발하고, 실트질 모래에 대한 실내실험의 자료로부터 구한 관측치와 예측치를 비교하여 이의 타당성을 검증하였다.

  • PDF

Optimal dimensioning for the corner combined footings

  • Lopez-Chavarria, Sandra;Luevanos-Rojas, Arnulfo;Medina-Elizondo, Manuel
    • Advances in Computational Design
    • /
    • 제2권2호
    • /
    • pp.169-183
    • /
    • 2017
  • This paper shows optimal dimensioning for the corner combined footings to obtain the most economical contact surface on the soil (optimal area), due to an axial load, moment around of the axis "X" and moment around of the axis "Y" applied to each column. The proposed model considers soil real pressure, i.e., the pressure varies linearly. The classical model is developed by trial and error, i.e., a dimension is proposed, and after, using the equation of the biaxial bending is obtained the stress acting on each vertex of the corner combined footing, which must meet the conditions following: 1) Minimum stress should be equal or greater than zero, because the soil is not withstand tensile. 2) Maximum stress must be equal or less than the allowable capacity that can be capable of withstand the soil. Numerical examples are presented to illustrate the validity of the optimization techniques to obtain the minimum area of corner combined footings under an axial load and moments in two directions applied to each column.

지반 그라우팅에 의한 상부구조물의 안전성 분석 (Stability Analysis of Upper Structures by Soil Grouting)

  • 황철성
    • 한국안전학회지
    • /
    • 제28권4호
    • /
    • pp.58-65
    • /
    • 2013
  • Transportation and further expansion of social infrastructure was needed along the development of urbanization and population concentration. To use the underground space due to the lack of availability of land, it is inevitable to intersect between present structure and tunnel during construction. Soil grouting is one of the ground improvement methods to reinforce weak soil around the underground structures by injection of grouting liquid. Some of central columns of an upper structure are damaged during injection of grouting liquid by injection pressure. To investigate and improve the stability of the tunnel, three dimensional analysis are performed with full construction stages which includes the construction of present underpass, damaging columns of the underpass, reinforcing the columns by H-pile and shear walls, and excavation and construct tunnel. The arrangement of grouting holes such as curtain and horizontal type affects largely to the stability of upper structure and horizontal arrangement diminish the shear forces which is the cause of damage of central columns. The liquid injection type of reinforcement for tunnel is not recommended while the presence of upper structure with columns. Wall type reinforcing is utilize for permant support of upper structures which is affected by grouting injection pressure. H-pile is utilize for temporary support, but not for permanent since the sharing of shear forces is not much to shear wall during tunnel construction.

Dynamic elastic local buckling of piles under impact loads

  • Yang, J.;Ye, J.Q.
    • Structural Engineering and Mechanics
    • /
    • 제13권5호
    • /
    • pp.543-556
    • /
    • 2002
  • A dynamic elastic local buckling analysis is presented for a pile subjected to an axial impact load. The pile is assumed to be geometrically perfect. The interactions between the pile and the surrounding soil are taken into account. The interactions include the normal pressure and skin friction on the surface of the pile due to the resistance of the soil. The analysis also includes the influence of the propagation of stress waves through the length of the pile to the distance at which buckling is initiated and the mass of the pile. A perturbation technique is used to determine the critical buckling length and the associated critical time. As a special case, the explicit expression for the buckling length of a pile is obtained without considering soil resistance and compared with the one obtained for a column by means of an alternative method. Numerical results obtained show good agreement with the experimental results. The effects of the normal pressure and the skin friction due to the surrounding soil, self-weight, stiffness and geometric dimension of the cross section on the critical buckling length are discussed. The sudden change of buckling modes is further considered to show the 'snap-through' phenomenon occurring as a result of stress wave propagation.

CHEMICAL COMPATIBILITY OF SOIL-BENTONITE CUT-OFF WALL FOR IN-SITU GEOENVIRONMENTAL CONTAINMENT

  • Inui, Toru;Takai, Atsushi;Katsumi, Takeshi;Kamon, Masashi;Araki, Susumu
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 3차
    • /
    • pp.135-139
    • /
    • 2010
  • A construction technique to install the soil-bentonite (SB) cut-off wall for in-situ geoenvironmental containment by employing the trench cutting and re-mixing deep wall method is first presented in this paper. The laboratory test results on the hydraulic barrier performance of SB in relation to the chemical compatibility are then discussed. Hydraulic conductivity tests using flexible-wall permeameters as well as swell tests were conducted for SB specimens exposed to various types and concentrations of chemicals (calcium chloride, heavy fuel oil, ethanol, and/or seawater) in the permeant and/or in the pore water of original soil. For the SB specimens in which the pore water of original soil did not contain such chemicals and thus the sufficient bentonite hydration occurred, k values were not significantly increased even when permeated with the relatively aggressive chemical solutions such as 1.0 mol/L $CaCl_2$ or 50%-concentration ethanol solution. In contrast, the SB specimens containing $CaCl_2$ in the pore water had the higher k values. The excellent linear correlation between log k and swelling pressure implies that the swelling pressure can be a good indicator for the hydraulic barrier performance of the SB.

  • PDF

Deformation analyses during subway shield excavation considering stiffness influences of underground structures

  • Zhang, Zhi-guo;Zhao, Qi-hua;Zhang, Meng-xi
    • Geomechanics and Engineering
    • /
    • 제11권1호
    • /
    • pp.117-139
    • /
    • 2016
  • Previous studies for soil movements induced by tunneling have primarily focused on the free soil displacements. However, the stiffness of existing structures is expected to alter tunneling-induced ground movements, the sheltering influences for underground structures should be included. Furthermore, minimal attention has been given to the settings for the shield machine's operation parameters during the process of tunnels crossing above and below existing tunnels. Based on the Shanghai railway project, the soil movements induced by an earth pressure balance (EPB) shield considering the sheltering effects of existing tunnels are presented by the simplified theoretical method, the three-dimensional finite element (3D FE) simulation method, and the in-situ monitoring method. The deformation prediction of existing tunnels during complex traversing process is also presented. In addition, the deformation controlling safety measurements are carried out simultaneously to obtain the settings for the shield propulsion parameters, including earth pressure for cutting open, synchronized grouting, propulsion speed, and cutter head torque. It appears that the sheltering effects of underground structures have a great influence on ground movements caused by tunneling. The error obtained by the previous simplified methods based on the free soil displacements cannot be dismissed when encountering many existing structures.