• Title/Summary/Keyword: soil physicochemical properties

Search Result 237, Processing Time 0.031 seconds

Leaching behavior of the herbicide bentazon in soil column (Soil column중 제초제 bentazon의 용탈 행적)

  • Kyung, Kee-Sung;Oh, Kyeong-Seok;Ahn, Ki-Chang;Kwon, Jeong-Wook;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.1
    • /
    • pp.59-64
    • /
    • 1998
  • In order to elucidate the leaching behaviour of the herbicide bentazon in soil, soil columns(5cm ID ${\times}$ 34 cm L) were packed with three different soils up to 30 cm height, followed by the treatment of [$^{14}C$]bentazon, and rice plants(Oryza sativa L.) were grown for 9 weeks on these columns, with the columns without growing rice plants as the control for comparison. The amounts of $^{14}C$ activities percolated were about 92% of the originally applied $^{14}C$ irrespective of the physicochemical properties of the soils in the absence of rice plants, whereas $21{\sim}50%$ of the originally applied $^{14}C$ was percolated in the presence of rice plants, suggesting that the amounts of $^{14}C$ leached decreased remarkably in rice-cultivating soils. Bentazon leached faster in soil with higher pH and with lower organic matter content in the presence of growing rice plants. The amounts of $^{14}CO_{2}$ evolved from the soil columns were less than 0.2% of the originally applied $^{14}C$. Smaller amounts of $^{14}C$ were translocated into shoots via roots in soils with higher organic matter content. $^{14}C$ activities distributed into the aqueous phase of the leachate collected from the soil columns increased with leaching period and by rice cultivation, whereas the physico-chemical properties of soils did not exhibit any effect. The amounts of soil-bound residues increased remarkably by cultivating rice plants.

  • PDF

Biochemical characterization of cotton stalks biochar suggests its role in soil as amendment and decontamination

  • Younis, Uzma;Athar, Mohammad;Malik, Saeed Ahmad;Bokhari, Tasveer Zahra;Shah, M. Hasnain Raza
    • Advances in environmental research
    • /
    • v.6 no.2
    • /
    • pp.127-137
    • /
    • 2017
  • Cotton is the major fiber crop in Pakistan that accounts for 2% of total national gross domestic product (GDP). After picking of cotton, the dry stalks are major organic waste that has no fate except burning to cook food in villages. Present research focuses use of cotton stalks as feedstock for biochar production, its characterization and effects on soil characteristics. Dry cotton stalks collected from agricultural field of Bahauddin Zakariya University, Multan, Pakistan were combusted under anaerobic conditions at $450^{\circ}C$. The physicochemical analysis of biochar and cotton stalks show higher values of % total carbon, phosphorus and potassium concentrations in biochar as compared to cotton stalks. The concentration of nitrogen was decreased in biochar. Similarly biochar had greater values of fixed carbon that suggest its role for carbon sequestration and as a soil amendment. The fourier transformation infrared spectroscopic spectra (FTIR) of cotton stalks and biochar exposed more acidic groups in biochar as compared to cotton stalks. The newly developed functional groups in biochar have vital role in increasing surface properties, cation exchange capacity, and water holding capacity, and are responsible for heavy metal remediation in contaminated soil. In a further test, results show increase in the water holding capacity and nutrient retention by a sandy soil amended with biochar. It is concluded that cotton stalks can be effectively used to prepare biochar.

Effect of Wood Charcoal and Pyroligneous Acid on Soil Microbiology and Growth of Red Pepper (탄화물이 토양미생물 및 고추 생육에 미치는 영향)

  • 안병준;조성택;조태수;이성재;이윤수
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.3
    • /
    • pp.49-56
    • /
    • 2003
  • As a part of agricultural utilization of charcoal and pyroligneous acid, the effect of wood carbonization products on the growth of red pepper and soil microorganisms was investigated. The treatment of charcoal and pyroligneous acid provided good growth conditions to microorganisms through neutralizing soil acidity and improving the physicochemical properties of soil. Therefore the density of useful microorganism in the soil has been increased. In the growth of red pepper, the length, diameter, and the fruit numbers of red pepper have been increased by treating with wood carbonization products. It was especially shown that yield has increased about 50% in the fruit number, by treating charcoal 1kg, 1000 time-diluted solution of pyroligneous acid and bacteria, compared with the control. It was estimated that increasing the length of seedling and the diameter of red pepper stem contributed to the resistance against the prerequisites of various environmental changes in open field. Therefore, the final yield would be increased. In the antagonism experiment of red pepper mold (Colletotrichum gloeosporioides), the mold became extinct in the 2- and 10-time diluted solution of pyroligneous acid, compared with the control. On the other hand, their growth speed was delayed in the 100- and 1000 time-diluted solution.

  • PDF

Studies on the Tree Growth and Soil Environmental Characteristics in the Planting Zone on the Back Slope of Dam (댐체 비탈면 녹화지역의 수목 생장 및 토양환경 특성에 관한 연구)

  • Bahn, Gwon-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.3
    • /
    • pp.85-98
    • /
    • 2021
  • In this study, the characteristics of tree growth and soil environment were analyzed at 5 sites that had been planted on the back slope of dam for more than 15 years in Korea. First, as a result of investigating the growth of 15 trees planted on the back slope of the dam, the average height was 10.6m, diameter at roots was 27.3cm, and DBH was 22.9cm, showing good growth status of most of the trees. In particular, the growth levels of pine, hackberry, and oak were similar or better than those of general forests and artificial ground. As a result of excavating and investigating the roots of trees, horizontal roots grew well in the left and right directions of the back slope of the dam, and the growth of vertical roots was insufficient. Currently, the roots of trees do not directly affect dam safety, but they may continue to grow in the long term and interfere with dam management. Second, the physicochemical characteristics of the soil on the back slope of dam were generally above the intermediate level in terms of landscape design standards, and were similar to those of the domestic forest soil. Therefore, although it was judged to be suitable for plant growth, isolation of the site, soil acidification, and nutrient imbalance may affect tree growth and forest health in the long term. Through this study, it was possible to confirm the potential and applicability of planting area on the back slope of dam as an ecological base. Continuous monitoring is required for safety management and ecological value of dams in the future, and through this, it will be possible to secure the feasibility of planting trees on the slopes of new or existing dams and improving management.

Identification of Tetrachloroethylene Sorption Behaviors in Natural Sorbents Via Sorption Models

  • Al Masud, Md Abdullah;Choi, Jiyeon;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.6
    • /
    • pp.47-57
    • /
    • 2022
  • A number of different methods have been used for modeling the sorption of volatile organic chlorinated compounds such as tetrachloroethylene/perchloroethylene (PCE). In this study, PCE was adsorbed in several natural sorbents, i.e., Pahokee peat, vermicompost, BionSoil®, and natural soil, in the batch experiments. Several sorption models such as linear, Freundlich, solubility-normalized Freundlich model, and Polanyi-Manes model (PMM) were used to analyze sorption isotherms. The relationship between sorption model parameters, organic carbon content (foc), and elemental C/N ratio was studied. The organic carbon normalized partition coefficient values (log Koc = 1.50-3.13) in four different sorbents were less than the logarithm of the octanol-water partition coefficient (log Kow = 3.40) of PCE due to high organic carbon contents. The log Koc decreased linearly with log foc and log C/N ratio, but increased linearly with log O/C, log H/C, and log (N+O)/C ratio. Both log KF,oc or log KF,oc decreased linearly with log foc (R2 = 0.88-0.92) and log C/N ratio (R2 = 0.57-0.76), but increased linearly with log (N+O)/C (R2 = 0.93-0.95). The log qmax,oc decreased linearly as log foc and log C/N increased, whereas it increased with log O/C, log H/C and log (N+O)/C ratios. The log qmax,oc increased linearly with (N+O)/C indicating a strong dependence of qmax,oc on the polarity index. The results showed that PCE sorption behaviors were strongly correlated with the physicochemical properties of soil organic matter (SOM).

Pedological and Mineralogical Characterizations of Hwangto (Yellow Residual Soils), Naju, Jeollanam-do, Korea (전라남도 나주시 동강면 일대 황토(풍화잔류토)의 토양학적 및 광물학적 특성 연구)

  • Kim, Yumi;Bae, Jo-Ri;Kim, Cheong-Bin;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.87-96
    • /
    • 2014
  • The objectives of this study were to characterize the physicochemical properties and mineralogy of Hwangto (yellow residual soils) from the southwestern part of Korea and to understand the soil-forming processes of the residual soils from their parent rocks. Both the yellowish residual soils as well as the unweathered and weathered parent rocks were obtained from Jangdong-ri, Donggang-myun, Naju, Jeollanam-do, Korea. The soil samples were examined to analyze the said soil's physicochemical properties such as color, pH, and particle size distribution. A scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis were performed in order to understand the mineralogy, chemical composition, and morphology of the soils. Two thin sections of a parent rock were analyzed to study its mineral composition. A particle size analysis of the soils indicates that the residual soil consists of mainly silt and clay (approximately 95%) and that soil textures are silty clay or silt clay loam. The soil colors of the residual soil are dark brown (7.5YR 3/4) through yellowish red (5YR 4/6). The pH of the residual soil ranges from 4.3 to 5.1. The major minerals of the parent rocks were quartz, biotite, chlorite, and plagioclase. The mineralogy of the sand fraction of the residual soil was quartz, biotite, muscovite and sanidine. The mineralogy of the silt fraction of the residual soil was quartz, biotite, muscovite, Na-feldspar, K-feldspar, and sanidine. The clay mineralogy of the soil was goethite, kaolinite, ilite, hydroxy-interlayed vermiculite(HIV), vermiculite, mica, K-feldspar and quartz. The mineral composition of the residual soil and the parent rock indicates that feldspar and mica in the parent rock weathered into illite, vermiculite and hydroxy-interlayed vermiculite(HIV), and finally changed into kaolinite and halloysite in the yellowish residual soils.

A Study on the Changes of Plant Species and Soil Environmental Characteristics on Green Roofs at Seoul Women's University (서울여자대학교 옥상녹화 지역의 식물 종 증감 및 토양환경 특성 변화)

  • Lee, Sang-Jin;Park, Gwan-Soo;Lee, Dong-Kun;Lee, Eun-Heui;Jang, Seong-Wan;Kim, Myeoung-Hee;Kil, Sung-Ho;Lee, Hang-Goo;Jang, Kwan-Woo;Park, Beom-Hwan;Yoon, Jun-Young;Kwon, Oh-Jung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.6
    • /
    • pp.109-117
    • /
    • 2013
  • This study was carried out to investigate the changes of plant species and soil physicochemical properties on green roofs established at Seoul Women's University in 2005, 2006 and 2007. The plant species and soil properties were investigated in 2013. The areas of green roof sites ranged $90{\sim}100m^2$. There were floras of vascular plants of 12 families, 20 genera and 22 species in the 2005 site, 24 families, 37 genera and 38 species in the 2006 site, 14 families, 27 genera and 31 species in the 2007 site. The total number of plant species decreased in the 2005 and 2006 sites and increased in the 2007 site since established. High proportion of dispersal type was barochory in the 2005 and 2006 site, and autochory in the 2007 site. And the proportion of the compositae family was high in the introduced plants over the sites for the all study sites. Average pH and organic matter concentration of green roof soil were ranged from 5.25 to 5.96 and 7.17 to 8.96% in study sites. The organic matter concentration and pH of green roof soil were lower in 2013 than in the three establishment years. Carbon concentration of green roof soil in the three study sites were ranged from 4.16 to 5.30% and total soil carbon in 10cm depth were ranged form 1.57 to $1.98kg/m^2$.

Relations between Soil Physicochemical Properties and Ginger Growth (토양의 물리.화학적 성질과 생강 생육과의 관계)

  • Kim, Dong-Jin;Ahn, Byung-Koo;Lee, Jin-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.2
    • /
    • pp.283-294
    • /
    • 2013
  • Root-rot disease is a serious problem in ginger cultivation fields and it reduces the quality and productivity of ginger. This study was conducted to investigate the effects of different soil physical and chemical properties on the changes of ginger growth. As comparing the selected soil chemical properties after harvesting the ginger plants with those before planting them, the contents of total nitrogen and exchangeable $Mg^{2+}$ increased, whereas electrical conductivity (EC) and exchangeable $K^+$ content decreased. Potassium (K) concentrations in ginger plant were markedly higher in both its shoot and root parts ranging from 63.9 to $72.3g\;kg^{-1}$ and from 27.6 to $37.3g\;kg^{-1}$, respectively, which might be related to the decrease of exchangeable $K^+$ content in soils. Incidence rate of ginger root-rot disease in the plots ranges between 26.7% and 88.1%. It was higher in low elevation plots with clay loam soils than in high elevation plots. In addition, the incidence of the disease increased as affected by high temperature and humid condition during the growth and maturity stages of ginger. Therefore, soil texture, field slop, and drainage system as well as chemical properties should be considered to cultivate ginger plant.

Effect of Sodium Chloride Containing-Composts on Growth of Lettuce (Lactuca sativa L.) and Chemical Properties of Salt Accumulated Plastic Film House Soils (퇴비중 NaCl 함유량별 시설재배 상추의 생육반응과 토양 화학성 변화)

  • Yang, Jang-Souck;Lee, In-Bog;Kim, Ki-Duck;Cho, Kwang-Rae;Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.3
    • /
    • pp.277-284
    • /
    • 1998
  • The raw food waste of Korea contained markedly high sodium chloride and such high sodium chloride concentration in the soil is a factor limiting plant growth and impairing soil physicochemical properties. This study was carried out to assess the effect of NaCl-containing compost on the growth of lettuce(Lactuca satjva L.) and on the soil chemical properties. For the experiment, six treatments applying 0, 0.5, 1, 3, 6, and 9% NaCl-containing composts at the rate of $20Mg\;ha^{-1}$ were conducted established in a greenhouse. Growth measurements, chemical analysis of lettuce foliage, and soil chemical properties after the harvest were investigated. Lettuce yield in the treatments applied to composts over 3% NaCl was gradually reduced and mortality of lettuce as well as Na concent ration of lettuce foliage progressively increased with successively higher NaCl concentration of composts. With an increase of NaCl concentration of composts, the values of ESP and exchangeable sodium concentration in the surface soil were significantly increased. Especially, ESP of surface soil in the treatment incorporated with 9% NaCl-containing compost after the harvest attained by about 15, suggesting that sodification of surface soil under a greenhouse condition can occur when the compost over 9% NaCl is applied to soil. In conclusion, the application of over 3% NaCl-containing compost at the rates of $20Mg\;ha^{-1}$ can cause undesirable influences in plant growth and also the treatments of over 6% NaCl-containing composts can create conspicuous deteriorations in soil chemical properties in the current year.

  • PDF

Physicochemical Properties of Asian Dust Sources

  • Ma, Chang-Jin;Kasahara, Mikio;Tohno, Susumu;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.26-33
    • /
    • 2008
  • In order to fully understand the chemical properties of Asian dust particles, especially their transformation and aging processes, it is desirable to investigate the nature of original sands collected at local source areas in China. This study presents the detailed properties of sands collected at four different desert regions (Yinchuan, Wuwei, Dulan, and Yanchi) in China. Most of sands have irregular shape with yellowish coloration, whereas some of them show peculiar colors. The relative size distribution of sands collected at Yinchuan, Wuwei, and Dulan deserts exhibits monomodal with the maximum level between 200 and $300{\mu}$, whereas that of Yanchi desert is formed between 100 and $200{\mu}$. The mass concentration ratio of each element to that of Si (Z/Si) determined by PIXE analysis has a tendency towards higher Z/Si ratios for soil derived elements. It was possible to visually reconstruct the elemental maps on the surface of individual sands by XRF microprobe technique. In addition, the multielemental mass concentration could be quantitatively calculated for numerous spots of desert sands.