• Title/Summary/Keyword: soil penetration

Search Result 517, Processing Time 0.042 seconds

A Study on the Performance Appraisal for Copper Sheet as Root Barrier Material Appling to Green Roof System (옥상녹화 및 인공지반녹화용 구리시트 방근재의 성능평가에 관한 연구)

  • Cho, Il-Kyu;Kwon, Shi-Won;Kwak, Kyu-Sung;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.5-8
    • /
    • 2007
  • Selection of proper root barrier as destination part of greening is very important in Root penetration resistance plan. To select proper root barrier, it need to understand composition of greening part, size, kind of plant, connection with waterproofing layer. In this point of view, we have establish greening on the roof or concrete structure, not been understand the structural mechanism. It means that we misunderstood about purpose of greening and using it. So, chosen materials and construction method was not proper for greening, it caused water leakage and decrease performance of concrete structure. Therefore, we examine the practical use of copper sheet considering environmental condition for green roof. Watertightness by water of greening part, root penetration resistance test by root penetration, bacteria resistance by must or bacteria in soil, chemical resistance by rain and chemical agent of fertilizer, and load resistance by soil depth, sire of plant. These suggested test methods could be referred as guideline to test in green roof system because of not exist any performance appraisal guideline or standard. Consequently, it should be analysis as technical and institutional subdividing test methods and it need to study constantly as varied angles.

  • PDF

Numerical simulations of deep penetration problems using the material point method

  • Lorenzo, R.;da Cunha, Renato P.;Cordao Neto, Manoel P.;Nairn, John A.
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.59-76
    • /
    • 2016
  • Penetration problems in geomechanics are common. Usually the soil is heavily disturbed around the penetrating bodies and large deformations and distortions can occur. The simulation of the installation of displacement piles is a good example of the interest of these types of problems for geomechanics. In this paper the Material Point Method is used to overcome the difficulties associated with the simulations of problems involving large deformation and full displacement type penetration. Recent modifications of the Material Point Method known as Generalized Interpolation Material Point and the Convected Particle Domain Interpolation are also used and evaluated in some of the examples. Herein a footing submitted to large settlements is presented and simulated, together with the processes associated to a driven pile under undrained conditions. The displacements of the soil surrounding the pile are compared with those obtained by the Small Strain Path Method. In addition, the Modified Cam Clay model is implemented in a code of MPM and used to simulate the process of driving a pile in dry sand. Good and rather encouraging agreement is found between compared data.

Development of testing apparatus and fundamental study for performance and cutting tool wear of EPB TBM in soft ground (토사지반 EPB TBM의 굴진성능 및 커팅툴 마모량에 관한 실험장비 개발 및 기초연구)

  • Kim, Dae-Young;Kang, Han-Byul;Shin, Young Jin;Jung, Jae-Hoon;Lee, Jae-won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.453-467
    • /
    • 2018
  • The excavation performance and the cutting tool wear prediction of shield TBM are very important issues for design and construction in TBM tunneling. For hard-rock TBMs, CSM and NTNU model have been widely used for prediction of disc cutter wear and penetration rate. But in case of soft-ground TBMs, the wear evaluation and the excavation performance have not been studied in details due to the complexity of the ground behavior and therefore few testing methods have been proposed. In this study, a new soil abrasion and penetration tester (SAPT) that simulates EPB TBM excavation process is introduced which overcomes the drawbacks of the previously developed soil abrasivity testers. Parametric tests for penetration rate, foam mixing ratio, foam concentration were conducted to evaluate influential parameters affecting TBM excavation and also ripper wear was measured in laboratory. The results of artificial soil specimen composed of 70% illite and 30% silica sand showed TBM additives such as foam play a key role in terms of excavation and tool wear.

Evaluation of Effective Soil Moisture From Natural Soil Surfaces (지표면 토양의 유효 수분함유량 산출에 관한 연구)

  • 오이석
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.117-127
    • /
    • 1995
  • In this paper several methods for retriving appropriate values of effective soil moisture contents from natural soil surfaces are introduced and compared each other. The soil medium has usually a nonuniform moisture profile; i.e., relatively dry at the top layer and relatively wet at the bottom layer. The effective soil moisture represents the quantitative value of soil moisture of the inhomogeneous soil medium in an average sense. A simple method is an arithmetic averaging of soil moisture values obtained from several layers of a soil surface. Otherwise, the penetration depths can be computed from a homogeneous and an inhomogeneous soil surfaces and compared in order to obtain the effective soil mosture. The other method is to obtain the effective soil moisture by comparing the reflectivities from both of a homogeneous and an inhomogeneous surfaces. Those methods are compared and the reflectivity technique is examined in more detail since the rader scattering is dominated by the reflectivity instead of the penetration.

Evaluation of Soil Disturbance Due to Bucket Installation in Sand (모래지반에서 버켓기초 설치에 의한 지반교란 평가)

  • Kim, Jae-Hyun;Lee, Seung-Tae;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.21-31
    • /
    • 2018
  • Bucket foundations are widely used in offshore areas due to their various benefits such as easy and fast installations. A bucket is installed using self-weight and the hydraulic pressure difference across the lid generated by pumping out water from inside the bucket. When buckets are installed in high permeable soil such as sands, upward seepage flow occurs around the bucket tip and interior, leading to a decrease in the effective stress in the soil inside the buckets. This process reduces the penetration resistance of buckets. However, the soil inside and outside the bucket can be disturbed due to the upward seepage flow and this can change the soil properties around the bucket. Moreover, upward seepage flow can create significant soil plug heave, thereby hindering the penetration of the bucket to the target depth. Despite of these problems, soil disturbance and soil plug heave created by suction installation are not well understood. This study aims to investigate the behavior of soil during suction installation. To comprehend the phenomena of soil plug heave during installation, a series of small-scale model tests were conducted with different testing conditions. From a series of tests, the effects of tip thickness of bucket, penetration rate, and self-weight were identified. Finally, soil properties inside the bucket after installation were approximated from the measured soil plug heave.

Laboratory Study for the Identification of Parameters affecting the Penetration Behavior of Spilled crude oil in a Coastal Sandy Beach (해양에서 유출된 기름의 해변 토양 침투거동에 미치는 영향인자 규명 실험)

  • Cheong Jo, Cheong
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.81-86
    • /
    • 2003
  • Understanding the penetration behavior of the spilled oil is very important to remove itself and to minimize its impact on intertidal biological communities by earlier treatment of the oil. The purpose of this study is to clarify the effects of wave and tidal actions on the penetration of spilled oil and to evaluate main factors of oil penetration using a sandy-beach model. Infiltration processes into the sediments showed significant difference between seawater and crude oil. Seawater was infiltrated by both wave action and tidal fluctuation into the sediments in sandy beach. However, spilled crude oil penetrated into the sediments only by falling tides and not by wave action, and the first tide is most important for the penetration of stranded oil. Over 70% of bulk fraction in penetrated crude oil was concentrated to the top 2 cm sediment-layer when spilled oil volume was 1 L/$\textrm{m}^2$. Moreover, the penetration of stranded oil into the sandy beach sediments was strongly correlated with the oil viscosity affected by temperature.

Compaction Characteristics of Multi-cropping Paddy Soils in South-eastern Part of Korea (우리나라 동남부 다모작 논토양의 경반화 특성)

  • Yun, Eul-Soo;Jung, Ki-Yeul;Park, Ki-Do;Sonn, Yeon-Kyu;Park, Chang-Yeong;Hwang, Jae-Bog;Nam, Min-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.688-695
    • /
    • 2011
  • This study was carried out for some survey about soil compaction in the multi-cropping system of paddy field. Investigated sites were 90 farmer's fields in south-eastern part of Korea. The tillage practices season was different according to cropping system of paddy; in spring for mono rice cultivation and in autumn for the multi-cropping field. The average tillage depth in investigated sites was about 25 cm, however, it is different between the farmer's tillage practices and soil characteristics. It is high correlation to tillage deep and minimum resistance of penetration. The reaching soil deep to maximum resistance of penetration was about 27 cm, and average penetration resistance of the deep is 1.8~2.0 MPa for moderately fine-textured soils and more than 3.0 MPa for moderately coarse-textured soils. The difference of penetration resistance between cultivating and compacted layer was in order to sandy loam > clayey loam > clayey, and the difference was lesser in poorly drained soils than somewhat poorly ones. In the rice mono cropping field, the maximum resistance in no-tillage for 15 years was 1.18~1.25 Mpa at 20~25 cm in soil deep, however, the resistance of field with every year tillage practices was 2.03~2.21 Mpa. In the extremely compacted sandy loam textured soils, the penetration resistance at 30 cm in soil depth was drastically reduced by the subsoil from 5.2 Mpa to 3.2 Mpa, and the watermelon root in plastic film house was deep elongated.

Soil Investigation by Helical Probe Test (나선심사시험에 의한 지반조사기법)

  • ;Yokel, Felix Y.
    • Geotechnical Engineering
    • /
    • v.3 no.4
    • /
    • pp.31-40
    • /
    • 1987
  • A helical probe test (HPT) suitable for in.situ soil exploration to a shallow depth and compaction control were developed and tested in different soils alongside traditional in-situ tests, including Standard Penetration Test (SPT), Cone Penetration Test (CPT) and in-situ density test. The helical probe test is economical and can be performed by a single person. The torque necessary to insert the probe Is used as a measure of soil characteristics. It was found that: the HPT test correlates well with the SPT test and the correlation is not sensitive to the soil type; the HPT test correlates well with the CPT test, but the correlation is sensitive to the soil type; the HPT torque provides a sensitive measure of relative compaction rind in-situ dry density of compacted soils; the reverse torque ratio decreases with increasing average grain sloe.

  • PDF

A Pilot Study of Inhole Type CPTu from Model Tests (실내모형실험을 통한 인홀형 탄성파콘 시험의 적용성 분석)

  • Jang, In-Sung;Jung, Min-Jae;Kwon, O-Soon;Mok, Young-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2C
    • /
    • pp.95-103
    • /
    • 2008
  • Seismic piezocone penetration tests (SCPTu) can be used to obtain dynamic properties of soils as well as cone resistance and penetration pore pressure. However, the SCPTu system can be hardly utilized in marine soils because it is difficult to install the source apparatus which generates the shear wave in offshore site. The authors developed an inhole type piezocone penetration test (CPTu) equipment which both source and receiver composed of bender elements were installed inside the rod located behind the cone. Therefore, it can be applicable to even an offshore site without any additional source apparatus. The objective of this paper is to investigate the practical application of inhole type CPTu by performing laboratory model tests using kaolinite as soft clay. The shear wave velocities of kaolinite soil were measured with time, and the effects of soil disturbance due to the installation of source and receiver were also examined for various distance between source and receiver.

Effects of Rice Straw Application and Green Manuring on Selected Soil Physical Properties and Microbial Biomass Carbon in No-Till Paddy Field (무경운 답에서 토양 물리성과 미생물 생체량 탄소 함량에 미치는 녹비작물 시용효과)

  • Lee, Young-Han;Ahn, Byung-Koo;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.105-112
    • /
    • 2010
  • Applications of plant residues and green manures generally improve the properties of soil under conventional farming system. Therefore, we investigated the improvement of selected soil physical properties, bulk density, porosity, and water content, soil penetration resistance, and soil microbial biomass carbon (SMBC) content as affected by different management practices: 1) conventional tillage without rice straw or green manure crop treatment (TNT, check plot), 2) no-tillage amended with rice straw (NTRS), 3) no-tillage amended with rye (NTR), 4) no-tillage amended with Chinese milk vetch (NTCMV), 5) no-tillage without rice straw or green manure crop treatment (NTNT), The values of bulk density, porosity, and water content ranged from 1.22 to 1.37 Mg $m^3$, from 48.3 to 54.0%, and from 35.0 to 40.2%, respectively. The management practices might positively influence the changes in the selected soil properties, especially in the second experimental year. The soil penetration resistance and SMBC content were also improved after applying rice straw and green manure crops as comparing with TNT. Therefore, applications of the rice straw and green manure crop management practices under no-tillage system positively influenced soil physical properties and soil microbial activities in paddy field.