• Title/Summary/Keyword: soil penetration

Search Result 517, Processing Time 0.025 seconds

Study on Applicability of CGS Method based on Field Experiments and Cavity Expansion Theory (현장시험과 공동팽창이론을 통한 CGS 공법의 적용성 평가)

  • Jung, Hyun-Seok;Seo, Seok-Hyun;Choi, Hangseok;Lee, Hyobum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.19-28
    • /
    • 2019
  • Grounds of the western coast of the Korean Peninsular are mostly composed of soft and cohesive soils, and it is necessary to carry out soil improvement before construction. The CGS (Compaction Grouting System) method has been commonly applied for the purpose of not only improving soft ground but also serving as the pile foundation of a bridge. In this paper, the CGS method was applied to the Incheon International Airport facility site, which consists of reclaimed landfill and soft clay soil, so as to evaluate the applicability of this soil improvement method to soft clay ground formations. Futhermore, results of construction were intensively studied along with a series of field experiments and theoretical consideration. The cone penetration tests were performed to assess the ground improvement effect of the CGS method. Consequently, the application of CGS method led to an increase in soil strength enough to be used as the pile foundation to support the bridge at the site. In addition, the size of the upper grout-bulb was estimated by adopting the cavity expansion theory and compared with that of actual grout bulb exhumed in the field. Therefore, it is proved that the cavity expansion theory can be utilized to predict and evaluate the improvement of soft ground.

A simple test method to evaluate workability of conditioned soil used for EPB Shield TBM (토압식 쉴드 TBM 굴진을 위한 화강풍화토의 컨디셔닝을 평가하는 간편 시험법)

  • Kim, Tae-Hwan;Kwon, Young-Sam;Chung, Heeyoung;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1049-1060
    • /
    • 2018
  • Soil conditioning is one of the key factors for successfull tunnel excavations utilizing the earth pressure-balanced (EPB) shield tunnel boring machine (TBM) by increasing the tunnel face stability and extraction efficiency of excavated soils. In this study, conditioning agents are mixed with the weathered granite soils which are abundant in the Korean peninsula and the workability of the resulting mixture is evaluated through the slump tests to derive and propose the most suitable conditioning agent as well as the most appropriate agent mix ratios. However, since it is cumbersome to perform the slump tests all the time either in the laboratory or in-situ, a simpler test may be needed instead of the slump test; the fall cone test was proposed as a substitute. In this paper, the correlation between the slump value obtained from the slump test and the cone penetration depth obtained from the proposed fall cone test was obtained. Test results showed that a very good correlation between two was observed; it means that the simpler fall cone test can be used to assess the suitability of the conditioned soils instead of the more cumbersome slump test.

Machine-Learning Evaluation of Factors Influencing Landslides (머신러닝기법을 이용한 산사태 발생인자의 영향도 분석)

  • Park, Seong-Yong;Moon, Seong-Woo;Choi, Jaewan;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.701-718
    • /
    • 2021
  • Geological field surveys and a series of laboratory tests were conducted to obtain data related to landslides in Sancheok-myeon, Chungju-si, Chungcheongbuk-do, South Korea where many landslides occurred in the summer of 2020. The magnitudes of various factors' influence on landslide occurrence were evaluated using logistic regression analysis and an artificial neural network. Undisturbed specimens were sampled according to landslide occurrence, and dynamic cone penetration testing measured the depth of the soil layer during geological field surveys. Laboratory tests were performed following the standards of ASTM International. To solve the problem of multicollinearity, the variation inflation factor was calculated for all factors related to landslides, and then nine factors (shear strength, lithology, saturated water content, specific gravity, hydraulic conductivity, USCS, slope angle, and elevation) were determined as influential factors for consideration by machine learning techniques. Minimum-maximum normalization compared factors directly with each other. Logistic regression analysis identified soil depth, slope angle, saturated water content, and shear strength as having the greatest influence (in that order) on the occurrence of landslides. Artificial neural network analysis ranked factors by greatest influence in the order of slope angle, soil depth, saturated water content, and shear strength. Arithmetically averaging the effectiveness of both analyses found slope angle, soil depth, saturated water content, and shear strength as the top four factors. The sum of their effectiveness was ~70%.

Characteristics of Dynamic Shear Behavior of Pile-Soil Interface Considering pH Conditions of Groundwater (지하수 pH조건을 고려한 말뚝-지반 접촉면의 동적 전단거동 특성)

  • Kwak, Chang-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.5
    • /
    • pp.5-17
    • /
    • 2022
  • A pile is a type of medium for constructing superstructures in weak geotechnical conditions. A pretensioned spun high-strength concrete (PHC) pile is composed of high-strength concrete with a specified strength greater than 80 MPa. Therefore, it has advantages in resistance to axial and bending moments and quality control and management since it is manufactured in a factory. However, the skin friction of a pile, which accounts for a large portion of the pile bearing capacity, is only approximated using empirical equations or standard penetration test (SPT) N-values. Particularly, there are some poor research results on the pile-soil interface under the seismic loads in Korea. Additionally, some studies do not consider geoenvironmental elements, such as groundwater pH values. This study performs sets of cyclic simple shear tests using submerged concrete specimens for 1 month to consider pH values of groundwater and clay specimens composed of kaolinite to generate a pile-soil interface. 0.2 and 0.4 MPa of normal stress conditions are considered in the case of pH values. The disturbed state concept is employed to express the dynamic behavior of the interface, and the disturbed function parameters are newly suggested. Consequently, the largest disturbance increase under basic conditions is observed, and an early approach to the failure under low normal stress conditions is presented. The disturbance function parameters are also suggested to express this disposition quantitatively.

Estimation of Ultimate Lateral Resistances of Piles Using CPT Cone Resistance in Sand (사질토지반에서 콘관입저항치 $q_c$에 의한 단말뚝의 극한수평단위지지력 평가)

  • Kim, Min-Kee;Kyung, Doo-Hyun;Hong, Jung-Moo;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.71-77
    • /
    • 2008
  • In this study, CPT-based methodology for estimating the ultimate lateral resistance, $p_u$, is proposed and verified for lateral loaded piles in sandy soil. Preexistent methods estimating the ultimate lateral resistance, $p_u$, and the ultimate lateral capacity, $H_u$, of pile have been based on the vertical effective stress, relative density, and the coefficient of lateral earth pressure. Similarly, cone resistance $q_c$ in pure sandy soil is expressed by those essential factors. As correlation between $p_u$ and $q_c$ are normalized with average effective stress ${\sigma}_m$, estimation methodology for the lateral loaded pile of $p_u$ in sandy soil is proposed. The method is verified by calibration chamber test results in pure sand. The standard derivation of estimated $p_u$ is 0.279, and COV (Coefficient Of Variation) of estimated $p_u$ is 0.272. These results showed that the estimated pus by the method are analogous with the measured $p_us$ in calibration chamber test.

Estimation of Undrained Shear Strength of Clay under Failed Slope (사면파괴 하부 점토지반 비배수강도의 평가)

  • Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5572-5577
    • /
    • 2012
  • Results of in-situ test, laboratory test and strength prediction method for the soft soil underlain by failed road embankment were compared each other. Comparing cone penetration test results with the field vane test results it can be seen that cone factor is 12. Undrained shear strengths determined from the cone factor which was predicted by prediction equation were smaller than those obtained from field vane tests. Among the prediction methods Jamiolkowsky's method gave close strengths to the measured undrained shear strengths by field vane tests and strength ratio were 0.88~1.23.

Analysis on the Behavior of Reticulated Root Piles for Reinforcing Footing using Computer Program (컴퓨터 프로그램을 이용한 기초보강용 그물식 뿌리말뚝의 거동 분석)

  • 박영호;변광욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.348-361
    • /
    • 1991
  • When reinforcing strip footing on a sand 8round with reticulated root piles, reinforcing effect depends on the length , number, cross sectional area, penetration angle, spacing, and Young's modulus of piles. the mode of action of reinfocement tendons in soil isn't one of carring developed tensile stresses but of anisotropic(uni-directional) reduction or even supression of one normal strain rate. R. H. Bassett and N. C. Last proposed that the reinforcement should be located on the direction of minor strain rate which coincides with the tensile strain rate in the velocity characteristics. Based on this proposal the author carried out a series of 2 - dimentional finite element analysis which varies the parameters mentioned above.

  • PDF

Numerical simulation of set-up around shaft of XCC pile in clay

  • Liu, Fei;Yi, Jiangtao;Cheng, Po;Yao, Kai
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.489-501
    • /
    • 2020
  • This paper conducts a complicated coupled effective stress analysis of X-section-in-place concrete (XCC) pile installation and consolidation processes using the dual-stage Eulerian-Lagrangian (DSEL) technique incorporating the modified Cam-clay model. The numerical model is verified by centrifuge data and field test results. The main objective of this study is to investigate the shape effect of XCC pile cross-section on radial total stress, excess pore pressure and time-dependent strength. The discrepancies of the penetration mechanism and set-up effects on pile shaft resistance between the XCC pile and circular pile are discussed. Particular attention is placed on the time-dependent strength around the XCC pile shaft. The results show that soil strength improved more significantly close to the flat side compared with the concave side. Additionally, the computed ultimate shaft resistance of XCC pile incorporating set-up effects is 1.45 times that of the circular pile. The present findings are likely helpful in facilitating the incorporation of set-up effects into XCC pile design practices.

Detectability Measurement of GPR for Buried Target in Self-Designed Test Field (자체 제작한 시험장에서의 GPR의 매설물 검출능력에 관한 측정)

  • Son, Soo-Jung;Shin, Byoung-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.322-328
    • /
    • 2000
  • In this paper, we were investigated the detectability on various specimen in self-designed test field using the GPR system with three antenna elements. The GPR system was constantly radiated 730MHz frequency. To examine the detectability on various condition, the test were experimented using different materials, size and buried depth. As an adjusted wave-propagation velocity, the location of hyperbolic curve pattern were displayed B-scan CRT. And the pattern was exactly positioned when it was compared to the real buried-depth. Therefore, we can confirm similarity between the wave-propagation velocity and previous results.

  • PDF

Anatomical Characteristics of Korean Red Pine (Pinus densiflora S. et Z.) Wood Degraded by a Brown-rot Fungus (Lentinus lepideus) (갈색부후균(Lentinus lepideus)에 의해 부후된 소나무 재(Pinus densiflora S. et Z.)의 해부학적 특성)

  • Kwon, Mi;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.39-50
    • /
    • 1993
  • The purpose of this study was to describe the micromorphological changes in Korean red pine (Pinus densiflora S. et Z.) wood decayed by a major brown-rot fungus, Lentinus lepideus, using scanning electron microscope and transmission electron microscope. At the end of the 12-week exposure to the fungus in soil block procedure(ASTM 1971), test blocks sustained 5.02% weight loss. The formation of bore hole by hyphae and penetration of hyphae through bordered pit were not observed. Instead, fungal hyphae appeared to penetrate axially tracheid luminar from the the ray cells via cross field pits. Hyphae were mainly found in lignin rich cell corner regions of tracheids, and also extensive degradation of tracheid wall occurred in this region. Extensive degradation of $S_2$ layer occurred without noticeable alteration of the $S_3$ layer, but warty layer and compound middle lamella remained relatively intact. Localized erosion, the characteristic of white rot, was observed in some cell wall and wall components including lignin were found to be decomposed.

  • PDF