• Title/Summary/Keyword: soil parameter

Search Result 713, Processing Time 0.027 seconds

Strain-based stability analysis of locally loaded slopes under variable conditions

  • Wang, Jia-Chen;Zhu, Hong-Hu;Shi, Bin;Garg, Ankit
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.289-300
    • /
    • 2020
  • With the rapid development of the distributed strain sensing (DSS) technology, the strain becomes an alternative monitoring parameter to analyze slope stability conditions. Previous studies reveal that the horizontal strain measurements can be used to evaluate the deformation pattern and failure mechanism of soil slopes, but they fail to consider various influential factors. Regarding the horizontal strain as a key parameter, this study aims to investigate the stability condition of a locally loaded slope by adopting the variable-controlling method and conducting a strength reduction finite element analysis. The strain distributions and factors of safety in different conditions, such as slope ratio, soil strength parameters and loading locations, are investigated. The results demonstrate that the soil strain distribution is closely related to the slope stability condition. As the slope ratio increases, more tensile strains accumulate in the slope mass under surcharge loading. The cohesion and the friction angle of soil have exponential relationships with the strain parameters. They also display close relationships with the factors of safety. With an increasing distance from the slope edge to the loading position, the transition from slope instability to ultimate bearing capacity failure can be illustrated from the strain perspective.

Assessment of groundwater contamination susceptibility based on water chemistry data - A review

  • Kim, Kang-Joo;Natarajan Rajmohan;Chae, Gi-Tak;Yun, Seong-Taek
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.12-15
    • /
    • 2004
  • Groundwater contamination susceptibility studies have many advantages in groundwater monitoring, management and future planning. Several methods have been developed and applied to the groundwater regime through out the world. However, each and every method has some limitations. In this study, a detailed review was carried out about the already existing methods for groundwater contamination susceptibility studies. Additionally, a new parameter called mineral dissolution factor is recommended for groundwater contamination susceptibility studies. This parameter is applied for groundwate contamination susceptibility studies in Namwon area, Korea. The result of this approach suggests that mineral dissolution parameter could overcome the limitations as observed in the earlier methods.

  • PDF

A Study on the Design-parameter of Mixed Ground by Using Cement-type Stabilizer (시멘트계 고화재에 의해 혼합처리된 지반의 설계정수에 관한 연구)

  • 천병식;임해식;전진규
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.2
    • /
    • pp.79-89
    • /
    • 2000
  • The application of stabilization method has increased because of short construction periods, no environmental problems with dumped and replaced soil, assurance of required strength and economical effect with mid to small size construction. The unconfined and triaxial(UU-condition) compression tests were executed with each mixing sample for the study of the improvement effects and the effect of design-parameters by the stabilization methods. Three typical stabilizers, which are representative in Korea, were applied in this study, and three common soils(very soft clay, general weathered soil, common clay), which are common in Korea, were used in this study. In this study, the effect of engineering factors(soils, stabilizers and water contents, etc.) which are important parameters for the improvement effects of mixed ground by stabilizers, was analyzed. As results, the tendencies of design-parameters(unconfined compression strength, deformation modulus and strength parameter) are presented and the criteria of the application of stabilization methods are suggested.

  • PDF

Strength Parameter (c,ø) and Dilatancy Correction of Undisturbed Weathered Granite Soil (불교란 화강토의 강도정수 (c,ø) 및 Dilatancy 보정)

  • 정진섭;양재혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.6
    • /
    • pp.106-114
    • /
    • 2000
  • In order to evaluate the shear characteristics of undisturbed weathered granite soil which is a typical residual soil in Korea, the mechanical properties are first investigated and discussed by carrying out a series of direct shear test and then dilatancy correction is performed by using Taylor’s correction equation. In this study, specimens are sampled at Pungam(-3, -8, -13m below ground surface), Kwangju and Iksan(-5m below ground surface), Jeonbuk. The test results are summarized as follows: 1) Mohr-Coulomb failure criterion is not linear under the low confining pressure. 2) The value of cohesion is smaller than usually determined value in low pressure region. 3) The value of strength parameter c and ø which are corrected by Taylor’s correction equation is a little bit small.

  • PDF

Prediction of Settlement for the Highly Plastic and Silty Soft Ground Contained of the Organic Deposits (유기질층을 포함한 고소성 실트질 연약지반의 침하 예측)

  • Yoo, Nam-Jae;Kim, Kyum;Yoo, Chang-Sun
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.91-98
    • /
    • 2011
  • In this thesis, from the results of settlement measurement performed at the site where embankment earthwork was carried out on the ground consisting of highly plastic and silty soft soils interlayered with organic deposits, various methods of predicting the embankment settlement such as Hoshino's method, Asaoka's method, hyperbolic method, ${\sqrt{s}}$ method and Monden's method were used to investigate their applicability and the inverse method of finding the soil parameter related to consolidation was used to predict the consolidation behavior in the future. It was confirmed that reliable prediction of consolidation behavior under various conditions could be done to estimate soil parameter related to consolidation such as the consolidation index and consolidation coefficient by the inverse method of comparing the measured settlement with the predicted value by the settlement prediction methods.

  • PDF

Nonlinear soil parameter effects on dynamic embedment of offshore pipeline on soft clay

  • Yu, Su Young;Choi, Han Suk;Lee, Seung Keon;Park, Kyu-Sik;Kim, Do Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.227-243
    • /
    • 2015
  • In this paper, the effects of nonlinear soft clay on dynamic embedment of offshore pipeline were investigated. Seabed embedment by pipe-soil interactions has impacts on the structural boundary conditions for various subsea structures such as pipeline, riser, pile, and many other systems. A number of studies have been performed to estimate real soil behavior, but their estimation of seabed embedment has not been fully identified and there are still many uncertainties. In this regards, comparison of embedment between field survey and existing empirical models has been performed to identify uncertainties and investigate the effect of nonlinear soil parameter on dynamic embedment. From the comparison, it is found that the dynamic embedment with installation effects based on nonlinear soil model have an influence on seabed embedment. Therefore, the pipe embedment under dynamic condition by nonlinear parameters of soil models was investigated by Dynamic Embedment Factor (DEF) concept, which is defined as the ratio of the dynamic and static embedment of pipeline, in order to overcome the gap between field embedment and currently used empirical and numerical formula. Although DEF through various researches is suggested, its range is too wide and it does not consider dynamic laying effect. It is difficult to find critical parameters that are affecting to the embedment result. Therefore, the study on dynamic embedment factor by soft clay parameters of nonlinear soil model was conducted and the sensitivity analyses about parameters of nonlinear soil model were performed as well. The tendency on dynamic embedment factor was found by conducting numerical analyses using OrcaFlex software. It is found that DEF was influenced by shear strength gradient than other factors. The obtained results will be useful to understand the pipe embedment on soft clay seabed for applying offshore pipeline designs such as on-bottom stability and free span analyses.

Static Behavior of Gravelly Soil with State Parameter (상태정수에 따른 자갈질 흙의 정적거동)

  • Heo, Seungbeom;Yoon, Yeowon;Kim, Woosoon;Kim, Jaeyoun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.5-14
    • /
    • 2010
  • Recent researches on the behavior of gravelly soils have been focused mainly on the relative density or on the gravel content. And some researchers presented the liquefaction behavior based on the relative density whereas others based on the gravel content of gravelly soil. However the relative densities vary with gravel content and relative density is not enough to fully express the behavior of gravelly soils. Therefore in this research state parameter which considers void ratio and effective confining pressure is introduced and Steady State Line(SSL) of gravelly soils for various gravel content are determined by undrained triaxial tests in order to express the behavior of gravelly soils. From the research the position of SSL moved downward with gravel content. And the same density of soil showed dense sand behavior or loose sand behavior depending upon the confining pressure. Especially relative density 80% of gravelly soil showed loose sand behavior under high confining pressure. However the gravelly soils with similar state parameters showed similar stress behaviors. It can bee seen that state parameter is useful tool to evaluate undrained behavior of gravelly soils. Also state parameter and undrained strength showed good correlations.

An Investigation on the Frequency Dependence of Soil Electrical Parameters

  • Lee, Bok-Hee;Kim, Ki-Bok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.69-76
    • /
    • 2015
  • This paper presents the results of an investigation into the frequency-dependent electrical parameters for different types of soil as a function of moisture content. The frequency dependence of soil electrical parameters is very important in the design of grounding systems. In fact, the performance of grounding systems is greatly dependent upon various factors such as soil type, particle size, water content, temperature, frequency, and the like. The resistivity and relative permittivity for four different soils were measured and analyzed in the frequency range of 1kHz - 1MHz. Soil resistivity declined as moisture content and frequency increased. In particular, the frequency dependence of soil resistivity was significant as the moisture content was low. In contrast, the relative permittivity of soil dramatically declined at the frequency of 10kHz or below as the moisture content increased, showing the opposite pattern in terms of variation patterns, compared to resistivity.