• Title/Summary/Keyword: soil organic carbon

Search Result 575, Processing Time 0.029 seconds

Quenching Curves for VOCs in the Analysis of Groundwater $^{14}C$ using Liquid Scintillation Counter (액체섬광계수기를 이용한 지하수의 $^{14}C$ 측정에서 휘발성유기화합물(VOC)에 대한 소광곡선)

  • Lee, Kil-Yong;Cho, Soo-Young;Yoon, Yoon-Yeol;Ko, Kyung-Seok;Kim, Yong-Je
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.53-59
    • /
    • 2007
  • Optimal quenching curves have been studied for the accurate analysis of $^{14}C$ in groundwater polluted by reducing efficiency of volatile organic compounds (VOCs) in liquid scintillation counter (LSC). The quenching parameters (SQP(E)) were measured for ten VOCs such as benzene, toluene, ethylbenzene, o-(m-,p-)xylene, trichloroethylene (TCE), tetrachloroethylene(PCE), carbon tetrachloride and chloroform. The quenching curves were plotted using $^{14}C$ standard solution and chloroform as a quenching agent. Optimal plotting conditions were determined for standard solution, LSC measuring time and the concentration of chloroform. The quenching effects of chlorinated organic compounds such as TCE, PCE, carbon tetrachloride and chloroform were greater than those of BTEX (benzene, toluene, ethylbenzene and xylene). Optimum measuring time was 100 minutes far 7,000 dpm/mL standard solution. A few mL of chloroform should be added for good quenching curves. These quenching curves have good correlation coefficients (> 0.99) and the curves could be applied to accurate analysis of $^{14}C$ in groundwater and tap water.

Microbial Influence on Soil Properties and Pollutant Reduction in a Horizontal Subsurface Flow Constructed Wetland Treating Urban Runoff (도시 강우유출수 처리 인공습지의 토양특성 및 오염물질 저감에 따른 미생물 영향 평가)

  • Chiny. C. Vispo;Miguel Enrico L. Robles;Yugyeong Oh;Haque Md Tashdedul;Lee Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.26 no.2
    • /
    • pp.168-181
    • /
    • 2024
  • Constructed wetlands (CWs) deliver a range of ecosystem services, including the removal of contaminants, sequestration and storage of carbon, and enhancement of biodiversity. These services are facilitated through hydrological and ecological processes such as infiltration, adsorption, water retention, and evapotranspiration by plants and microorganisms. This study investigated the correlations between microbial populations, soil physicochemical properties, and treatment efficiency in a horizontal subsurface flow constructed wetland (HSSF CW) treating runoff from roads and parking lots. The methods employed included storm event monitoring, water quality analysis, soil sampling, soil quality parameter analysis, and microbial analysis. The facility achieved its highest pollutant removal efficiencies during the warm season (>15℃), with rates ranging from 33% to 74% for TSS, COD, TN, TP, and specific heavy metals including Fe, Zn, and Cd. Meanwhile, the highest removal efficiency was 35% for TOC during the cold season (≤15℃). These high removal rates can be attributed to sedimentation, adsorption, precipitation, plant uptake, and microbial transformations within the CW. Soil analysis revealed that the soil from HSSF CW had a soil organic carbon content 3.3 times higher than that of soil collected from a nearby landscape. Stoichiometric ratios of carbon (C), nitrogen (N), and phosphorus (P) in the inflow and outflow were recorded as C:N:P of 120:1.5:1 and 135.2:0.4:1, respectively, indicating an extremely low proportion of N and P compared to C, which may challenge microbial remediation efficiency. Additionally, microbial analyses indicated that the warm season was more conducive to microorganism growth, with higher abundance, richness, diversity, homogeneity, and evenness of the microbial community, as manifested in the biodiversity indices, compared to the cold season. Pollutants in stormwater runoff entering the HSSF CW fostered microbial growth, particularly for dominant phyla such as Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes, which have shown moderate to strong correlations with specific soil properties and changes in influent-effluent concentrations of water quality parameters.

Piloting the FBDC Model to Estimate Forest Carbon Dynamics in Bhutan

  • Lee, Jongyeol;Dorji, Nim;Kim, Seongjun;Wang, Sonam Wangyel;Son, Yowhan
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.2
    • /
    • pp.73-78
    • /
    • 2016
  • Bhutanese forests have been well preserved and can sequester the atmospheric carbon (C). In spite of its importance, understanding Bhutanese forest C dynamics was very limited due to the lack of available data. However, forest C model can simulate forest C dynamics with comparatively limited data and references. In this study, we aimed to simulate Bhutanese forest C dynamics at 6 plots with the Forest Biomass and Dead organic matter Carbon (FBDC) model, which can simulate forest C cycles with small amount of input data. The total forest C stock ($Mg\;C\;ha^{-1}$) ranged from 118.35 to 200.04 with an average of 168.41. The C stocks ($Mg\;C\;ha^{-1}$) in biomass, litter, dead wood, and mineral soil were 3.40-88.13, 4.24-24.95, 1.99-20.31, 91.45-97.90, respectively. On average, the biomass, litter, dead wood, and mineral soil accounted for 36.0, 5.5, 2.5, and 56.0% of the total C stocks, respectively. Although our modeling approach was applied at a small pilot scale, it exhibited a potential to report Bhutanese forest C inventory with reliable methodology. In order to report the national forest C inventory, field work for major tree species and forest types in Bhutan are required.

Aging Effects on Sorption and Desorption of Atrazine in Soils (Atrazine의 토양 흡착 및 탈착에 미치는 접촉시간의 영향)

  • Park Jeong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.26-34
    • /
    • 2005
  • The effects of soil-chemical contact time (aging) on sorption and desorption of atrazine were studied in soil slurries because aging is an important determinant affecting on the sorption and desorption characteristics of organic contaminants in the environment. Sorption isotherm and desorption kinetic experiments were performed, and soilwater distribution coefficients and desorption rate parameters were evaluated using linear and non-linear sorption equations and a three-site desorption model, respectively. Aging time for sorption of atrazine in sterilized soil slurries ranged from 2 days to 8 months. Atrazine sorption isotherms were nearly linear $(r^2\;>\;0.97)$ and sorption coefficients were strongly correlated to soil organic carbon content. Sorption distribution coefficients $(K_d)$ increased with increasing aging in all soils studied. Sorption non-linearity did not increase with increased aging except for the Houghton muck soil. Desorption profiles were well described by the three-site desorption model. The equilibrium site fraction $(f_{eq})$ decreased and the non-desorbable site fraction $(f_{nd})$ increased as a function of aging time in all soils. In all soils studied, it was found that when normalized to soil organic matter content the concentration of atrazine in desorbable sites was comparatively constant, whereas that in non-desorbable site increased as aging increased.

Differences of Soil Carbon by Green Manure Crops in Rotated Cropping System (윤작지 녹비작물종류에 따른 토양탄소 함량 변화)

  • Kim, Kyeong-Mok;Lee, Byeong-Jin;Cho, Young-Son
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1027-1031
    • /
    • 2012
  • This experiment was conducted to select winter-adaptable crop system or cropping systems for an enhanced carbon (C) fixation amount in plant biomass and soil. Single or mixed cropping systems of green manure crops, rye (R), triticale (TC), hairy vetch (HV), TC+HV, and control (fallow) were investigated during winter and spring. The amount and content of C and N in the above-ground biomass and soil C content by soil depth were measured under different green manure crops. The above-ground biomass was highest in TC+HV followed by R and TC with 664, 585, and 545 kg $10a^{-1}$, which exceeded the biomass of control by 181, 160, and 149%, respectively. The amount of C accumulation was higher in soil surface than deep soil. which was a similar pattern to the above-ground biomass. Therefore, green manure cropping in winter and spring seasons will be very helpful of improve soil organic matter.

Comparison of soil nutrients, pH and electrical conductivity among fish ponds of different ages in Noakhali, Bangladesh

  • Tapader, Md. Morshed Alam;Hasan, Mehedi Mahmudul;Sarker, Bhakta Supratim;Rana, Md. Enayet Ullah;Bhowmik, Shuva
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.1
    • /
    • pp.16-22
    • /
    • 2017
  • An experiment was conducted to detect aquaculture pond bottom soil nutrients, pH and electrical conductivity with a view to optimize production and to incorporate the scientific method of fish nursing, rearing and culturing at Noakhali district in Bangladesh. The soil samples were collected from the recently dug ponds (1 - 5 years) and older ponds (> 5 years). Samples were taken from five different spots in a Z shape from each pond and were mixed to get a composite sample. The composite samples from the ponds were collected in polyethylene bags and shipped to the laboratory for analysis. The soil samples were analyzed with respect to pH, electrical conductivity (EC), organic carbon (OC), organic matter (OM), nitrogen (N), phosphorous (P), potassium (K) and sulfur (S). The average value of pH, OC, OM, N, P, K and S were $7.43{\pm}0.40$, $2.21{\pm}1.43%$, $1.47{\pm}0.53%$, $2.52{\pm}0.94{\mu}g\;g^{-1}$, $0.126{\pm}0.047{\mu}g\;g^{-1}$, $3.84{\pm}1.77{\mu}g\;g^{-1}$, $0.191{\pm}0.106{\mu}g\;g^{-1}$ and $306.72{\pm}222.05{\mu}g\;g^{-1}$ respectively, in Noakhali. The average EC, OC, OM, N and P contents were found to be higher in Subornachar than those in Sonapur. On the other hand pH, K and S were found to be higher in Sonapur than the values of Subornachar. The pH, EC, OC, OM, N and S contents were found to be higher in new ponds than old ponds whereas P and K contents were found to be higher in old pond than in new pond.

Carbon Forestry: Scope and Benefit in Bangladesh

  • Rahman, Md. Siddiqur;Akter, Salena
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.4
    • /
    • pp.249-256
    • /
    • 2013
  • The aim of the study was to reveal the scope and benefits derives from establishing carbon forests in a country like Bangladesh. Carbon forestry is the modernized forestry practice that evolves no cutting of trees or vegetation rather conserves them in the wood. Trees might be the source of carbon sink at large scale by establishing carbon forests. To find out how and in what extent forests of Bangladesh could contribute to global emission reduction, tree species of economic importance were taken into account about their carbon sequestration potential. Data source was a secondary one. Bangladesh has subtropical evergreen and deciduous forest tree species. Here trees can sequester almost 45-55 percent organic carbon in their biomass. On an average, trees in different types of stands can sequester 150-300 tC/ha. Carbon value of these forests might be 7,500-15,000 USD per hactre (assuming 50 USD per equivalent $tCO_2$). Thus, accounting tree carbon credits of total forested lands of Bangladesh, there might be a lump sum value of $1.89{\times}10^{10}-3.79{\times}10^{10}$ USD. If soil carbon is added, this amount would jump. Alternatively, there are two times higher spaces as marginal lands than this for starting carbon forestry. However, carbon forestry concept is still a theoretical conception unless otherwise their challenges are addressed and solved. Despite of this, forests of Bangladesh might be the key showcase for conserving biodiversity in association with carbon capture. Protected areas in Bangladesh are of government wealth, however, degraded and denuded waste and marginal lands might be the best fit for establishing carbon forests.