• Title/Summary/Keyword: soil nutrient concentrations

Search Result 213, Processing Time 0.025 seconds

Quantitative Comparisons of Soil Carbon and Nutrient Storage in Larix leptolepis, Pinus densiflora and Pinus rigitaeda Plantations

  • Kim, Choonsig;Cho, Hyun-Seo
    • The Korean Journal of Ecology
    • /
    • v.27 no.2
    • /
    • pp.67-71
    • /
    • 2004
  • This study was carried out to evaluate soil carbon and nutrient storage of three adjacent coniferous plantations (Larix leptolepis, Pinus densiflora and Pinus rigitaeda) growing on a similar site with a same planting age (42-year old) in the Sambong Exhibition Forests, Hamyang-gun, Gyungsangnam-do. The soil carbon concentration among three plantations was not significantly different in 0∼10cm soil depth, but other two depths (10∼20cm and 20∼30cm) showed higher carbon concentration in P. densiflora plantation than the other two plantations. The exchangeable cation concentrations (Ca and Mg) in 0∼10cm depth were significantly lower in L. leptolepis plantation than in the other two plantations, while nitrogen and phosphorus concentrations were not significantly different among three plantations except for nitrogen at 10∼20cm depth in P. rigitaeda plantation. Soil carbon storage in 0∼20cm depth of three plantations was unaffected by the stand types. Soil nutrient storage was not significantly different at each depth except for nitrogen storage at 10∼20cm depth in P. rigitaeda plantation because of the variation of bulk density and coarse fragment. This result demonstrates that soil carbon and nutrient concentrations among the plantations on a similar soil condition can be altered significantly by tree species effects over 40 years after plantation establishment.

Effect of Nutrient Concentrations and Leaching Percentage on Growth and Nutrient Uptake by Perilla Frutesens Britton var. Japonica Hara in Plug Culture (잎들깨의 플러그육모에서 용탈률 및 시비농도가 생육 및 무기원소 흡수에 미치는 영향)

  • Choi, Jong-Myung;Yoon, Hwa-Mo;Park, Jong-Yoon
    • The Journal of Natural Sciences
    • /
    • v.13 no.1
    • /
    • pp.83-96
    • /
    • 2003
  • Effect of Nutrient Concentrations, fertigation frequency, and learching percentage on crop growth and nutrient concentrations in root media were evaluated. The treatment of each irrigation with $50 mg.L^{-1}$ of nitrogen in stage 2 and increase to $80 mg.L^{-1}$ nitrogen in stage 3 had the highest crop growth at 34 days after sowing among treatments tested. Feeding with low nutrient concentrations and elevated frequency decreased crop growth. In treatments of each leaching percentage, feeding with low nutrient concentrations and elevated frequency resulted in increased tissue nutrient contents. The less tissue potassium content and higher calcium and magnesium contents were observed in treatment of 50% leach than those in 0% leach. All treatment tested had soil solution pH higher than 6.8. Electrical conductivity in treatments of 50% leach were lower than those of 0% leach. Feeding with low nutrient concentrations and elevated feeding frequency in each leaching percentage resulted in increased electrical conductivity in soil solution of root media. Trends of medium nutrient concentrations were similar to those of electrical conductivity.

  • PDF

Comparisons of Nutrient Concentration of Leaves, Roots, and Soils in Three Bamboo Stands

  • Baek, Gyeongwon;Yoon, Jun-Hyuck;Bae, Eun Ji;Lee, Jihyun;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.108-114
    • /
    • 2022
  • In bamboo, the nutrient status of tissues and associated soil is an important indicator of nutrient uptake by various bamboo species. In this study, the nutrient concentrations of leaves, roots, and mineral soil at 0-10 cm depths were examined in three bamboo stands [Phyllostachys bambusoides S ieb. et Zucc, Phyllostachys nigra var. henonis Stapf ex. Rendle, and Phyllostachys pubescens (Mazel) Ohwi] at a broad regional scale in southern Korea. In the three bamboo species, species-specific differences were observed in the carbon (C) and calcium (Ca) concentrations of leaves and in the nitrogen (N) and magnesium (Mg) concentrations of roots. Ca concentrations in leaves were significantly higher in P. bambusoides (11.94 g Ca kg-1) than in P. pubescens (7.83 g Ca kg-1), whereas potassium (K) concentrations were lowest in P. bambusoides among the three bamboo species. N concentrations in the roots were significantly lower in P. pubescens (5.23 g N kg-1) than in P. nigra var. henonis (7.72 g N kg-1). In contrast to bamboo tissues, soil nutrients, such as total N, organic C, exchangeable Ca2+, and Mg2+, did not differ significantly among the bamboo species. These results suggest that species-specific practices will be required for nutrient management of bamboo stands because nutrient concentrations vary considerably in the tissues of the three studied species.

Effects of thinning intensity on nutrient concentration and enzyme activity in Larix kaempferi forest soils

  • Kim, Seongjun;Han, Seung Hyun;Li, Guanlin;Yoon, Tae Kyung;Lee, Sang-Tae;Kim, Choonsig;Son, Yowhan
    • Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.5-11
    • /
    • 2016
  • Background: As the decomposition of lignocellulosic compounds is a rate-limiting stage in the nutrient mineralization from organic matters, elucidation of the changes in soil enzyme activity can provide insight into the nutrient dynamics and ecosystem functioning. The current study aimed to assess the effect of thinning intensities on soil conditions. Un-thinned control, 20 % thinning, and 30 % thinning treatments were applied to a Larix kaempferi forest, and total carbon and nitrogen, total carbon to total nitrogen ratio, extractable nutrients (inorganic nitrogen, phosphorus, calcium, magnesium, potassium), and enzyme activities (acid phosphatase, ${\beta}$-glucosidase, ${\beta}$-xylosidase, ${\beta}$-glucosaminidase) were investigated. Results: Total carbon and nitrogen concentrations were significantly increased in the 30 % thinning treatment, whereas both the 20 and 30 % thinning treatments did not change total carbon to total nitrogen ratio. Inorganic nitrogen and extractable calcium and magnesium concentrations were significantly increased in the 20 % thinning treatment; however, no significant changes were found for extractable phosphorus and potassium concentrations either in the 20 or the 30 % thinning treatment. However, the applied thinning intensities had no significant influences on acid phosphatase, ${\beta}$-glucosidase, ${\beta}$-xylosidase, and ${\beta}$-glucosaminidase activities. Conclusions: These results indicated that thinning can elevate soil organic matter quantity and nutrient availability, and different thinning intensities may affect extractable soil nutrients inconsistently. The results also demonstrated that such inconsistent patterns in extractable nutrient concentrations after thinning might not be fully explained by the shifts in the enzyme-mediated nutrient mineralization.

Alternative Nutrient Cycles for Terrestrial Plants, Positive Feedbacks through Detrital Processes, and Nutrient Use Efficiency (육상식물 중심의 영양소 순환 경로와 부식과정에 의한 양성 되먹임과정, 그리고 영양소 이용효율)

  • Lee, Dowon;Thomas P. Burns
    • The Korean Journal of Ecology
    • /
    • v.16 no.1
    • /
    • pp.115-131
    • /
    • 1993
  • Six nutrient cycles involving terrestrial plants are identified and characterized. Plants affect biotic and abiotic cycles through their effects on soil properties. They determine their internal nutritional status and nutrient concentrations in their environment via internal and external cycles. Contributions of organic matter to mycorrhizal, trophic, and detrital mediated external cycles and alterations of nutrient concentrations by plants can promote positive feedbacks leading to increased availability and retention of soil nutrients in open systems. Recognizing alternative cycles through plants leads to a definition of nutrient use efficiency for ecosystems: the ratio of system production to nutrient content of organic matter. A simple graph model to predict changes of nutrient use efficiency during primary succession is then presented.

  • PDF

Nutrient Dynamics through Water Transport in Natural Deciduous Hardwood Forests in Chunchon, Kangwon Province (강원도 춘천지역 낙엽활엽수림에서의 수분이동에 따른 양분동태)

  • 진현오;손요환;이명종;박인협;김동엽
    • The Korean Journal of Ecology
    • /
    • v.26 no.1
    • /
    • pp.13-18
    • /
    • 2003
  • We examined water flux, concentrations and contents in nutrients in precipitation, throughfall, stemflow and soil solution in natural deciduous hardwood forest(Quercus variabilis and Q. mongolica) in Chunchon, Kangwon Province. The volume of throughfall was 2∼3% higher in Q. variabilis than in Q. monglica while volume of stemflow, Ao, A and B soil solution was 10∼15% higher in Q. variabilis compared to Q. monglica. Concentrations of K/sup +/ increased in throughfall H while concentrations of Ca/sup 2+/, Mg/sup 2+/ and NO₃/sup -/ increased in Ao soil solution. The former might be related to the canopy leaching and the latter related to leaching and nitrification in Ao horizon. Nutrient concentrations in throughfall, Ao, A and B soil solution decreased with increasing amount of water and especially the decreases in concentrations of K/sup +/, Mg/sup 2+/ and Cl/sup -/ were significant. Nutrient concentrations of Ca/sup 2+/ in Ao soil solution was 1.5 times higher in Q. variabilis than in Q. mongolica. However, there were no significant nutrient concentration differences in throughfall, stemflow and A and B soil solution between the two forest types. Stemflow was less than 10% of total water volume (throughfall + stemflow) to the forest floor, and contribution of stemflow to nutrient cycling seemed to be low in the study forest.

The Effects of Organic Manure and Chemical Fertilizer Application Levels on the Growth and Nutrient Concentrations of Yellow Poplar (Liriodendron tulipifera Lin.) Seedlings (유기질 및 화학비료 처리수준이 어린 백합나무 생장 및 양분농도에 미치는 영향)

  • Han, Si Ho;An, Ji Young;Choi, Hyung-Soon;Cho, Min Seok;Park, Byung Bae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.5
    • /
    • pp.37-48
    • /
    • 2015
  • Soil nutrient management is important to maintain the constant productivity of seedling production in the nursery for successful forest restoration. This study investigated the effects of organic manure and chemical fertilizer application levels on the growth, soil properties, and nutrient concentrations of yellow poplar seedlings. One-year-old yellow poplar seedlings were treated with the combination of 3 level organic manures(0, 5 Mg/ha, 10 Mg/ha; mixture of poultry manure, cattle manure, swine manure, and sawdust) and 3 level nitrogen-phosphorus-potassium(NPK) chemical fertilizers(0, 1x(urea, $30g/m^2$; fused superphosphate, $70g/m^2$; potassium chloride, $15g/m^2$), 2x). Organic manure significantly increased the soil pH and the concentrations of nitrogen, available phosphorous, exchangeable potassium, calcium, and magnesium. In contrast, the NPK chemical fertilizer decreased the soil pH and exchangeable calcium concentration, did not affect the soil concentrations of nitrogen and magnesium, and increased the concentrations of available phosphorous and exchangeable potassium. Both organic manure and NPK chemical fertilizer treatments increased the seedling height, root collar diameter, and dry weight by 39% and 25%, respectively. The treatment with manure 5 Mg/ha and NPK 2x chemical fertilizer mostly increased seedling dry weight by 2.6 times more than that of the control. Compared to the effects of the fertilization treatments on the soil properties, the effects on nutrient concentrations in the leaves were relatively small. These findings indicate that organic manure that was derived from livestock byproducts and sawdust can be utilized with chemical fertilizer to improve seedling production as well as conserving soil quality.

Chemical Assessment of Heavy Metal Contamination in Soil

  • Yang, Jae-E.;Choi, Moon-Heon
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.8-11
    • /
    • 1997
  • Current methods of evaluating soil contamination by heavy metals rely on analyzing samples for total contents of metals or quantities recovered in various chemical extracting solutions. Results from these approaches provide only an index for evaluation because these methodologies yield values not directly related to bioavailability of soil-borne metals. In addition, even though concentrations of metals may be less than those required to cause toxic effects to biota, they may cause substantial effects on soil chemical parameters that determine soil quality and sustainable productivity. The objective of this research was to characterize effects of Cu or Cd additions on soil solution chemistry of soil quality indices, such as pH, EC, nutrient cation distribution and quantity/intensity relations (buffer capacity). Metals were added at rates ranging from 0 to 400 mg/kg of soil. Soil solution was sequentially extracted from saturated pastes using vacuum. Concentrations of Cu or Cd remaining in soil solutions were very low as compared to those added to the soils, warranting that most of the added metals were recovered as nonavailable (strongly adsorbed) fractions. Adsorption of the added metals released cations into soil solution causing increases of soluble cation contents and thus ionic strength of soil solution. At metal additions of 200~400 mg/kg, EC of soil solution increased to as much as 2~4 dS/m; salinity levels considered high enough to cause detrimental effects on plant production. More divalent cations (Ca+Mg) than monovalent cations (K+Na) were exchanged by Cu or Cd adsorption. The loss of exchangeable nutrient cations decreased long-term nutrient supplying capacity or each soil. At 100 mg/kg or metal loading, the buffering capacity was decreased by 60%. pH of soil solution decreased linearly with increasing metal loading rates, with a decrement of up to 1.3 units at 400 mg Cu/kg addition. Influences of Cu on each of these soil quality parameters were consistently greater than those of Cd. These effects were of a detrimental nature and large enough in most cases to significantly impact soil productivity. It is clear that new protocols are needed for evaluating potential effects of heavy metal loading of soils.

  • PDF

Effects of Germanium Treatments on Nutrient Concentrations in Soil and Leaves and Leaf Characteristics in a 'Niitaka' Pear (Pyrus pyrifolia) Orchard (게르마늄 처리 방법이 '신고'배 과원의 토양과 엽의 무기성분 및 엽 특성에 미치는 영향)

  • Choi, Hyun-Sug;Kim, Tae-Yeon;Kim, Wol-Soo;Lee, Youn
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.2
    • /
    • pp.273-282
    • /
    • 2011
  • This study was conducted to investigate the effects of germanium (Ge) application types on the nutrient concentrations in soil and leaves and leaf characteristics in a 'Niitaka' pear orchard in 2004. Ge application included foliar application, fertigation in soils, trunk injection, and the three-combined application. All Ge treatedplots had lower soil $NO_3$-N, K, and Ca concentrations than those of control plot. Ge concentrations in Ge treated-soils were approximately 50 times higher than those of the control. Ge applications significantly increased area, dry weight, and specific weight in leaves compared to the control. Control treated-trees had greater K concentrations in leaves than the Ge treated-trees, which was oppositively observed for the leaf Ca; leaf Ca was higher on the Ge treated-trees than control. Leaf Ge concentrations were significantly higher on the Ge treated-trees compared to the control, except for the Ge fertigation. Ge concentrations in fruits were greater on the Ge-treated trees than the control trees.

Nutrient Dynamics through Water Transports in Natural Deciduous Forests in Gwangju, Gyeonggi Province (경기도 광주지역 천연낙엽활엽수림에 있어서 강우이동에 따른 양분동태)

  • Jin Hyun-O;Son Yowhan;Yi Myong-Jong;Park In-Hyeop;Kim Dong-Yeop
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.2
    • /
    • pp.164-170
    • /
    • 2005
  • The amounts and nutrient compositions in precipitation, throughfall, stemflow and soil solution of natural deciduous forests (Quercus variabilis and Q. mongolica) were examined in Gwangju, Gyeonggi Province. The proportion to gross precipitation was $85\%$ for throughfall, $2-6\%$ for stem flow, $53-54\%$ for Ao horizon soil solution, $23-30\%$ for A horizon soil solution, and $11-14\%$$ for B horizon soil solution, respectively. pH and K concentration increased in throughfall and only K concentration increased in stemflow. Canopy leaching appeared to influence these changes. pH, and Ca and Mg concentrations increased significantly in the Ao horizon soil solution, and Ca concentration was higher in the B horizon than in the A horizon. However, there were no significant differences in pH and other nutrient concentrations between A and B horizons. Litter decomposition and leaching from Ao horizon might explain the changes. K, Mg and Cl concentrations in throughfall and soil solution decreased with precipitation. Nutrient contents increased in the transports from precipitation, through throughfall, to Ao horizon soil solution, while they decreased in the transport from A to B horizon soil solution. Stemflow contained less than $10\%$ of total (throughfall plus stemflow) nutrient contents.