• Title/Summary/Keyword: soil nailing method

Search Result 95, Processing Time 0.025 seconds

Probabilistic optimization of nailing system for soil walls in uncertain condition

  • Mitra Jafarbeglou;Farzin Kalantary
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.597-609
    • /
    • 2023
  • One of the applicable methods for the stabilization of soil walls is the nailing system which consists of tensile struts. The stability and safety of soil nail wall systems are influenced by the geometrical parameters of the nailing system. Generally, the determination of nailing parameters in order to achieve optimal performance of the nailing system for the safety of soil walls is defined in the framework of optimization problems. Also, according to the various uncertainty in the mechanical parameters of soil structures, it is necessary to evaluate the reliability of the system as a probabilistic problem. In this paper, the optimal design of the nailing system is carried out in deterministic and probabilistic cases using meta-heuristic and reliability-based design optimization methods. The colliding body optimization algorithm and first-order reliability method are used for optimization and reliability analysis problems, respectively. The objective function is defined based on the total cost of nails and safety factors and reliability index are selected as constraints. The mechanical properties of the nailing system are selected as design variables and the mechanical properties of the soil are selected as random variables. The results show that the reliability of the optimally designed soil nail system is very sensitive to uncertainty in soil mechanical parameters. Also, the design results are affected by uncertainties in soil mechanical parameters due to the values of safety factors. Reliability-based design optimization results show that a nailing system can be designed for the expected level of reliability and failure probability.

A Study on Reinforcing Effect of Multi-Bar Spring Nailing (다철근 스프링 네일링 공법의 보강효과 검토에 관한 연구)

  • Lee, Choong-Ho;Jung, Young-Jin;Kim, Dong-Sik;Chae, Young-Su
    • Journal of the Society of Disaster Information
    • /
    • v.3 no.2
    • /
    • pp.147-169
    • /
    • 2007
  • This study investigates the reinforcing effects of the Multi-bar Spring nails with respect to the conventional Soil-nails in artificial slopes. Based on wide experience related to design and construction, soil nails have been widely applied to reinforce slope in the world. Multi-bar spring nails are one of the improved soil nailing methods. These method maximizes bending, shearing, pull-out resistance for those multi-nails, not unit nail, that are inserted in the borehole using special spacer at regular intervals. In addition, because cutting plane is confined effect resulting from a pressured plate at the end of the nails with compression spring equipment, slope stability is secured using MS-nailing method. Analyzing bending, pull-out, shearing condition of MS-nail, it was examined throughly elastic region, load transfer capacity, reinforcing effect on cutting plate of MS-nails. In addition, Pilot and laboratory tests, numerical analysis were carried out to verify the superiority of MS-nailing method. In case, MS nailing method is applied to reinforce artificial slope, it was analyzed that bending, pull-out, shearing resistance was increased more than existing nailing method was applied. In this study, it was shown that surface failure was more or less prevented using MS-nailing method, confining effect on cutting plane using spring stuck to flexible equipment.

  • PDF

A Consideration on Deformation Characteristics of Soil Nailed Retaining-Walls on Field Measurements (현장계측에 의한 쏘일네일링 보강벽체의 변형특성에 관한 고찰)

  • Yoon, Bae-Sic;Lee, Jong-Moon;Kang, In-Kyu;Kwon, Young-Ho;Kim, Hong-Taek
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.534-537
    • /
    • 2007
  • The soil nailing was generally using method in practical business, in application of the soil nailing, the analysis was primarily used to Beam-Colum Method, Finite Element Method and Limit Equilibrium Method. Beam-Colum Method and Finite Element Method were able to examine transformation but widely using Limit Equilibrium Method wasn't able to examine transformation and displacement Therefore, this study was focused on presenting stability in comparison with former study-results about horizontal displacement of the soil nailing retaining-walls satisfing a criterion safety factor of Limit Equilibrium. There were performing comparison field measurements and former study-results in first step.

  • PDF

A Basic Study on Upward Soil Nailing Combined Horizontal Drainage (수평배수공을 겸한 상향식 쏘일네일링 공법의 기초연구)

  • Kim, Hongtaek;Lee, Jungjae;Chung, Jongmin;Choi, Geunhyeok;Lee, In
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.151-158
    • /
    • 2009
  • In the early 1990s, soil nailing was first introduced as method of reinforcement for the slope stability and ground excavation, and as its application was increased the improved soil nailing was also developed. Most recently used for grout soil nailing greatly improve the methods and techniques for self-improvement techniques are classified as soil nailing. As the representative for the grout pressure method to improve the join method pressure grouting and improved method for the self-drilled soil nailing, removable soil nailing, upward soil nailing combined with horizontal drainage system. This paper is to compare upward soil nailing combined with horizontal drainage system with downward direction of the soil nailing. In order to study the limit equilibrium slope stability analysis and comparison with factor of safage, excavation for the vertical displacement for comparison with continuous analysis. According to this study, safage factor is decreased considerably using limit equilibrium analysis and makes no odds for the horizontal displacement when soil nail was installed upward.

  • PDF

Design Case Study of Permanent Excavation Wall Using Soil Nailing System (쏘일네일링 공법을 적용한 영구 지하굴착 벽체의 설계사례 연구)

  • Park, Si-Sam;Lee, Je-Man;Yoo, Chan-Ho;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.84-91
    • /
    • 2005
  • In case of soil nailing system, there have been many attempts to expand into slope and temporary earth retaining system stabilization method since the first ground excavation earth retaining system construction in 1993. Recently, jointing wall, underground wall of buildings and excavation earth retaining wall, construction were increasingly applied for effective utilization of the limited underground space and land application maximized. However, the application of joining wall into retaining wall or building by temporary soil nailing system and design of permanent wall were performed by using Rankine earth pressure theory without considering the distribution of earth pressure in the soil nailing. In this study was performed to introduce the design case by 'Two-Body Translation mechanism (TBTM)' to be able to consider distribution of earth pressure in the soil nailing when designing the permanent jointing wall using soil nailing system for effective utilization of ground space. Also, this study attempts to evaluate the earth pressure change, decreasing effect of wall displacement and increasing effect of stability when advanced soil nailing system is constructed using $FLAC^{2D}$ ${\nu}er.$ 3.30 program and 'Two-Body Translation mechanism'.

  • PDF

A Study of Reinforced Design Chart for Soil Nailing Slopes (Soil Nailing 공법을 적용하기 위한 사면보강 설계도표에 관한 연구)

  • Seo, Jin-Won;Kim, Hak-Moon;Jang, Kyung-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1009-1019
    • /
    • 2009
  • Soil nailing method is widely used in reinforcing slopes and excavating earth. The analysis of nail-reinforced slopes, in order to determine the economical length ratio and nail angle, complicated analytical need to be applied by means of computer programs. Therefor this suggested Soil stability Chart for nailed slopes which may be very useful for pre-design, rapidly design, and final check. Three slope types, three nail length and three nail angles are selected for the stability analysis by using limit equilibrium method of Bishop and French Method. From the above results, this study propose the slope reinforced design charts for dry season and rainy season. This proposed reinforced design charts can check dry season as well as rainy season, also these charts can provide reinforcing requirement, soil nail's economical length ratio and nail angle as well.

  • PDF

A Basic Study for Design and Analysis of the Green Wall System (Green Wall 시스템의 설계 및 해석을 위한 기초연구)

  • Park, Si-Sam;Kim, Jong-Min;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.681-688
    • /
    • 2005
  • The Green Wall is the highest eco-system among a segmental retaining wall systems. Recently, the demand of high segmental retaining wall (SRW) is increased in domestic. The soil nailing system is applied in order to maintain the high SRW stability for steeper slope. However, the proper design approach that can consider the earth pressure reduction effects in soil nailing system has not been proposed. Hence, the purpose of this study was to provide the design and analysis technique of the segmental retaining wall reinforced by soil nailing. Also, in this study, various parametric studies using numerical method as shear strength reduction (SSR) technique were carried out. In the parametric study, the length ratio and the bond ratio of the soil nailing were changed to identify the earth pressure reduction effect of the retaining wall reinforced by soil nailing.

  • PDF

Study of Soil Nailing Application as a Reinforcement Method for Slided Slope (붕괴사면보강을 위한 Soil Nailing의 적용성에 관한 연구)

  • 이성철;김명학
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.127-134
    • /
    • 2000
  • Soil nailing is in-situ ground improvement technique of reinforcing soils using passive inclusions for the purpose of slope stability. Also soil nailing, in general, was used and studied as a reinforcement technique at cut slope, but this paper presents the results of study for soil nailing application as a reinforcement technique at the banking over slided slope. In-situ pull-out tests of nails, instrumented with strain gauges, were performed to investigate the maximum pull-out load and to calculate the unit side resistance in each different layer. And the apparent average unit side resistance of this study was compared with that of other sites installed at cut slope.

  • PDF

Analytical Evaluation on Soil Slope Reinforced by Pressure Grouted Protrusion Type Soil Nailing (가압식 돌기네일에 의해 보강된 토사 비탈면의 해석적 평가)

  • Hong, Cheor-Hwa;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.5-16
    • /
    • 2017
  • Soil nailing is the most general method to reinforce the slope by taking pullout and shear resistance force of the nail for stabilizing the slope. Domestic soil nailing design method considers only pullout resistance and does not consider the shear resistance sufficiently. In case of nail, the effect of tensile stress is dominant, but it is desirable to design by considering shear stress as well as tensile stress in case of slope where circle failures occur. Recently, studies on the shear resistance effect of nails have been carried out in the geotechnical field. However, many researches on the shear reinforcement effect of soil nailing have not been conducted until now. Most of the studies are about increasing pullout resistance by improving material, shape and construction method of nail. Therefore, it is necessary to the study on shear resistance of soil nailing and development of new methods to increase the shear force. In this study, large shear test and limit equilibrium analysis have been performed for a new soil nailing method to increase the shear resistance by forming protrusions through pressurized grouting after installing a packer on the outside of deformed bar. The study results showed that shear resistance of protrusion type soil nailing increased compared to soil nailing and it is more effective when applied to the ground with large strength parameters.