• 제목/요약/키워드: soil movement

검색결과 515건 처리시간 0.026초

교대말뚝기초의 측방유동에 관한 원심모형실험 (Centrifuge Model Experiments for Lateral Soil Movements of Piled Bridge Abutments.)

  • 최동혁;정길수;박병수;유남재
    • 산업기술연구
    • /
    • 제25권B호
    • /
    • pp.63-71
    • /
    • 2005
  • This paper is an experimental result of investigating lateral soil movements at piled bridge abutments by using the centrifuge model facility. Three different centrifuge model experiments, changing the methods of ground improvement at bridge abutment on the soft clayey soil (no improvement, preconsolidation and plastic board drains (PBD), sand compaction pile (SCP) + PBD), were carried out to figure out which method is the most appropriate for resisting against the lateral soil movements. In the centrifuge modelling, construction process in field was reconstructed as close as possible. Displacements of abutment model, ground movement, vertical earth pressure, cone resistance after soil improvement and distribution of water content were monitored during and after centrifuge model tests. As results of centrifuge model experiments, preconsolidation method with PBD was found to be the most effective against the lateral soil movement by analyzing results about displacements of abutment model, ground movement and cone resistance. Increase of shear strength by preconsolidation method resulted in increasing the resistance against lateral soil movement effectively although SCP could mobilize the resistance against lateral soil movement. It was also found that installment with PBD beneath the backfill of bridge abutment induced effective drainage of excess pore water pressure during the consolidation by embanking at the back of the abutment and resulted in increasing the shear strength of clay soil foundation and eventually increasing the resistance of lateral soil movement against piles of bridge abutment.

  • PDF

Effects of Compost and Gypsum on Soil Water Movement and Retention of a Reclaimed Tidal Land

  • Lee, Jeong-Eun;Yun, Seok-In
    • 한국토양비료학회지
    • /
    • 제47권5호
    • /
    • pp.340-344
    • /
    • 2014
  • Compost and gypsum can be used to ameliorate soil physicochemical properties in reclaimed tidal lands as an organic and inorganic amendment, respectively. To evaluate effects of compost and gypsum on soil water movement and retention as a soil physical property, we measured the soil's saturated hydraulic conductivity and field capacity after treating the soil collected in a reclaimed tidal land with compost and gypsum. Saturated hydraulic conductivity of soil increased when compost was applied at the conventional application rate of $30Mg\;ha^{-1}$. However, the further application of compost insignificantly (P > 0.05) increased saturated hydraulic conductivity. On the other hand, additional gypsum application significantly increased soil saturated hydraulic conductivity while it decreased soil field capacity, implying the possible effect of gypsum on flocculating soil colloidal particles. The results in this study suggested that compost and gypsum can be used to improve hydrological properties of reclaimed tidal lands through increasing soil water retention and movement, respectively.

Technique for Soil Solution Sampling Using Porous Ceramic Cups

  • Chung, Jong-Bae
    • Applied Biological Chemistry
    • /
    • 제41권8호
    • /
    • pp.583-586
    • /
    • 1998
  • Porous ceramic cups are used for monitoring ion concentration in soil solutions in various time course and depth. A soil solution sampler was constructed in laboratory by inserting pliable perfluoroalkoxy(PFA) tubings into porous cup through holes in PVC rod segment which plugged top opening of the porous cup. The system was installed in drip irrigated soil in a vertical position, and nitrogen movement below the drip basin was monitored. To collect soil solution, vacuum in the cup was applied with a hand vacuum pump. The samples obtained were sufficient enough to run quantitative analyses for a number of chemicals. Nitrogen transformation and movement could be well defined, and the system seemed to be relevant to the other soil solution samplers in monitoring chemical movement in soil. Although this system has general deficiencies found in the other samplers using ceramic cup, it could be easily constructed at a low cost. Since the tubing was pliable, the cups could be installed in horizontal position, and this allows installations of the cups at more precise depth increments and also more precise samplings of soil solution at each depth.

  • PDF

답전윤환 인삼재배 예정지 토양의 물 이동특성 평가 (Assessment on Water Movement in Paddy-Upland Rotation Soil Scheduled for Ginseng Cultivation)

  • 허승오;이윤정;연병열;전상호;하상건;김정규
    • 한국약용작물학회지
    • /
    • 제17권3호
    • /
    • pp.204-209
    • /
    • 2009
  • This study was conducted to assess water movement in paddy-upland rotation soil scheduled for ginseng cultivation through the measurement of infiltration and permeability of soil water. Soil sample was divided with four soil layers. The first soil layer (to 30cm from top soil) was loamy sand, the second and the third soil layers (30$\sim$70 ㎝) were sand, and the fourth (< 120 ㎝) was sandy loam. The soil below 130 ㎝ of fourth soil layer was submerged under water. The shear strength, which represents the resisting power of soil against external force, was 3.1 kPa in the first soil layer. This corresponded to 1/8 of those of another soil layer and this value could result in soil erosion by small amount of rainfall. The rates of infiltration and permeability depending on soil layers were 39.86 cm $hr^{-1}$ in top soil, 2.34 cm $hr^{-1}$ in 30$\sim$70 ㎝ soil layer, 5.23 cm $hr^{-1}$ and 0.18 cm $hr^{-1}$ in 70$\sim$120 ㎝ soil layer, with drain tile, and without drain tile, respectively. We consider that ground water pooled in paddy soil and artificial formation of soil layer could interrupt water canal within soil and affect negatively on water movement. Therefore, we suggest that to drain at 5 m intervals be preferable when it makes soil dressing or soil accumulation to cultivate ginseng in paddy-upland rotation soil to reduce failure risk of ginseng cultivation.

다층토양에서의 물과 공기의 움직임 (Water and Air Movement in Bounded Layered Soil)

  • 선우중호
    • 물과 미래
    • /
    • 제8권2호
    • /
    • pp.56-60
    • /
    • 1975
  • Traditional descriptions of water movement in soils and of calculations of infiltration rates neglect the air movement and its compressibility. The movement of two fluids in the bounded layered porous medium is treated analytically and computer simulations are conducted for given boundary conditions and initial saturation profiles. The movement of a given saturation across the interface between the different soil layers is theoretically developed by considering the conservation of mass. It is shown that the existence of the interface affects the infiltration rate when the average total velocity is greater than zero. The transition from one layer to another layer cause a change in the capillary drive and consequently influences the infiltration rate.

  • PDF

매립지반 지하공동구의 수평이동원인에 대한 수치해석적 분석 (Numerical Analysis of Utility Tunnel Movement under Reclamation Ground)

  • 윤우현;황철성
    • 한국안전학회지
    • /
    • 제28권5호
    • /
    • pp.35-40
    • /
    • 2013
  • Recently reclamation land is largely developed to utilize the land according to economic growth. The soil of landfill is soft, low shear strength, which makes it difficult to use the equipment. A large movement is occurred on the utility tunnel under construction. The inclined land with high water level and underground facilities are widely distributed and the excess pore water pressure may occur under construction similarly to this study. Some different conditions are made to design result, such as 4m of soil piling near the construction area, heavy rainfall during 2nd excavation that may cause flow liquefaction. To analyze the cause of transverse lateral movement, Three dimensional analysis are performed to four load cases, which is original design condition, flow liquefaction by heavy rainfall, unsymmetric lateral soil pressure, and both of them simultaneously. Ten steps of full construction stage, 1st excavation for utility tunnel, construction of utility tunnel, 1st refill, piling soil from 1m to 4 m, 2nd excavation for drainage culvert, liquefaction around the utility tunnel, construction of drainage culvert and 2nd refill, are take into account to investigate the cause of movement.

Effect of Temperature and Plow Pan on Water Movement in Monolithic Weighable Lysimeter with Paddy Sandy Loam Soil during Winter Season

  • Seo, Mijin;Han, Kyunghwa;Jung, Kangho;Cho, Heerae;Zhang, Yongseon;Choi, Seyeong
    • 한국토양비료학회지
    • /
    • 제49권4호
    • /
    • pp.300-309
    • /
    • 2016
  • The monolithic weighing lysimeter is a useful facility that could directly measure water movement via layers, drainage, and evapotranspiration (ET) with precise sensors. We evaluated water movement through layers and water balance using the lysimeter with undisturbed paddy sandy loam soil, Gangseo soil series (mesic family of Anthraquic Eutrudepts classified by Soil Taxonomy) during winter season from Dec. 2014 to Feb. 2015. Daily ET indicated up to 1.5 mm in December and January and 2 mm in February. The abrupt increase of soil water tension at the depth of 0.1 m, when soil temperature at the same depth was below $2^{\circ}C$, was observed due to temporary frost heaving. The surface evaporation was less than reference ET below -15 kPa of soil water potential at the depth of 0.1 m. The maximum drainage rate was similar to the saturated hydraulic conductivity of a plow pan layer. Both upward and downward water movement, related to ET and drainage, were retarded by a plow pan layer. This study demonstrated that the lysimeter study could well quantify water balance components even under frost heaving during winter season and that a plow pan with low permeability could act as a boundary that affects drainage and evapotranspiration.

측방유동을 받는 교대말뚝기초에 대한 거동분석 (Behavior of Piled Abutment adjacent to Surcharge Loads)

  • 정상섬;서정주;장범수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.25-32
    • /
    • 2000
  • In order to analyze the behavior of piled abutment adjacent to surcharge loads a numerical study was conducted. In 2D plane stalin analysis, the distribution of lateral soil movement was investigated by varying the thickness of clay layer and the magnitude of surcharge loads. In 3D analysis, the magnitude and distribution of lateral pile-soil movement were studied for different cap rigidity. Based on limited parametric studies, a simple method is proposed to identify the lateral pressure of piled abutment adjacent to surcharge loads.

  • PDF

측방변형지반속 매설관 주변지반의 파괴모드 (Soil Failure Mode of a Buried Pipe Around in Soil Undergoing Lateral Movement)

  • 홍원표;한중근
    • 한국환경복원기술학회지
    • /
    • 제5권5호
    • /
    • pp.11-21
    • /
    • 2002
  • A series of model tests is performed to evaluate the relationship between soil and a buried pipe in soil undergoing lateral movement. As the result of the model tests, a wedge zone and plastic flow zones could be observed in front of the pipe. And also an arc failure of cylindrical cavity could be observed at both upper and lower zones. Failure shapes in both cohesionless and cohesive soils are nearly same, which was investigated failure angle of $45^{\circ}+{\phi}/2$. In the cohesionless soil, the higher relative density produces the larger arc of cylindrical cavity. On the basis of failure mode observed from model tests, the lateral earth pressure acting on a buried pipe in soil undergoing lateral movement could be applying the cylindrical cavity extension mode. The deformation behavior of soils was typically appeared in three divisions, which are elastic zones, plastic zones and pressure behavior zones.

산지(山地)의 Mass Soil Movement 현상(現象)의 몇 가지 특성(特性) (Characteristics of the Mass Soil Movement Events)

  • 우보명
    • 한국산림과학회지
    • /
    • 제15권1호
    • /
    • pp.49-60
    • /
    • 1972
  • 1972년(年) 8월(月) 18, 19 양일간(兩日間)의 호우(豪雨)(424.1mm)시(時)에 산지(山地)의 단위면적내(單位面積內)에 붕괴발생지(崩壞發生地)가 많았던 안성천유역(安城川流域)의 동북지역(東北地域) 약(約) 20,750 ha의 산지(山地)에서 발생(發生)된 mass soil movement 현상(現象)의 몇 가지 특성(特性)을 조사분석(調査分析)하였다. 결정편암지대(結晶片岩地帶)에서는 계안(溪岸)에 안상(岸狀) 및 여상붕괴(鑢狀崩壞)가, 또 화강암지대(花崗巖地帶)에서는 중상복부(中上腹部)에서 토석유형(土石流型)의 선상(線狀), 판상(板狀) 및 패각상산붕(貝殼狀山崩)이 많이 발생(發生)되었으며, 또 유립목지(有立木地)나 독나지(禿裸地)에서 보다도 치수(稚樹) 유령목지(幼齡木地) 및 척악임지(瘠惡林地)에서 많이 발생(發生)되었다. 평행사면(平行斜面)이나 상승사면(上昇斜面)에서 보다도 하강사면(下降斜面)이나 복합사면(複合斜面)에서, 특(特)히 변곡천이점부위(變曲遷移點部位)에서 많이 발생(發生)되었으며, 산록(山麓)에서 산중복부위(山中腹部位)보다도 중복(中腹)에서 상복(上腹)에 이르는 주곡(主谷)의 최상부(最上部) 분곡부위(分谷部位)에서 가장 많이 발생(發生)되었다. 이 연구결과(硏究結果) 예방치산계획수립(豫防治山計劃樹立)에 필요(必要)한 황폐위험지역(荒廢危險地域)의 판정(判定)에 유용(有用)한 자료(資料)가 될 것이다.

  • PDF