• Title/Summary/Keyword: soil moisture characteristics

Search Result 544, Processing Time 0.027 seconds

Analysis of Soil Moisture Characteristics in Nut Pine Forest about Seasons and Soil Layers (잣나무림에서의 시기별 토층별 토양수분 특성분석)

  • Hong, Eun-Mi;Choi, Jin-Yong;Yoo, Seung-Hwan;Nam, Won-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.105-114
    • /
    • 2012
  • Soil moisture plays a pivotal role in hydrological processes, especially in the forest which covers more than 64% of the national land. Soil moisture was monitored to analyze soil moisture change characteristics in terms of time and soil layers in this study. 2 Years soil moisture change data was obtained from the experimental nut pine forest and statistical analysis including auto-correlation and cross-corelation among soil moisture data from different soil layers was conducted. Using the monitored soil moisture data, a relationship between soil moisture change and precipitation was analyzed and seasonal soil moisture change characteristics were analyzed. From the result of inter-relationships among soil layers in terms of season and time lag, soil moisture change characteristics in the nut pine forest were upper soil layers were much sensitive than lowers, and seasonal variation if soil moisture for upper soil layers were bigger than lowers showing low correlation with precipitation in winter and spring due to freezing and snowfalls.

Soil Moisture Extraction Characteristics of Cucumber Crop in Protected Cultivation (오이 시설재배지에서의 토양수분 소비특성 분석)

  • Hong, Eun Mi;Choi, Jin-Yong;Nam, Won Ho;Kang, Moon-Seong;Jang, Jeong-Ryel
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.2
    • /
    • pp.37-46
    • /
    • 2014
  • Water for crop growth were supplied by irrigation in protected cultivation and these are accumulated in the soil and utilized for crop evapotranspiration. The study for analyzing soil moisture characteristics is necessary for adequate irrigation water and soil water management in protected cultivation. Soil moisture content, irrigation water quantity and meteorological data were monitored to analyze soil moisture increment and extraction characteristics in terms of soil layers and cucumber crop growth stages. In first cropping period, the total amount of irrigation water was 5.07 mm/day, soil moisture increment was 4.82 mm/day and soil moisture extraction was 5.56 mm/day. In second cropping period, the total amount of irrigation water was 4.82 mm/day, soil moisture increment was 4.65 mm/day and soil moisture extraction was 4.73 mm/day. Soil moisture extraction rate from 0 to 75 cm is 90.3 % in first cropping period and 79.1 % in second cropping period. The majority irrigation water were consumed in root zone, however, about 15 % of soil moisture were losses by infiltration in lower soil layer. Soil moisture extraction and extraction pattern of cucumber crop calculated in this study can be utilized as a basic data for irrigation water management in protected cultivation.

Analysis of Soil Moisture Recession Characteristics in Conifer Forest (침엽수 산림에서의 토양수분 감쇄특성 분석)

  • Hong, Eun-Mi;Choi, Jin-Yong;Nam, Won-Ho;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.4
    • /
    • pp.1-9
    • /
    • 2011
  • Forest area covers 64 % of the national land of Korea and the forest plays a pivotal role in the hydrological process such as flood, drought, runoff, infiltration, evapotranspiration, etc. In this study, soil moisture monitoring for conifer forest in experimental forest of Seoul National University has been conducted using FDR (Frequency Domain Reflection) for 6 different soil layers, 10, 20, 30, 60, 90 and 120 cm during 2009~2010, and precipitation data was collected from nearby AWS (Automatic Weather Station). Soil moisture monitoring data were used to estimate soil moisture recession constant (SMRC) for analyzing soil moisture recession characteristics. From the results, empirical soil moisture recession equations were estimated and validated to determine the feasibility of the result, and soil moisture contents of measured and calculated showed a similar tendency from April to November. Thus, the results can be applied for soil moisture estimation and provided the basic knowledge in forest soil moisture consumption. Nevertheless, this approach demonstrated applicability limitations during winter and early spring season due to freezing and melting of snow and ice causing peculiar change of soil moisture contents.

Characteristics of Soil Moisture Distributions at the Spatio-Temporal Scales Based on the Land Surface Features Using MODIS Images (MODIS 이미지를 이용한 지표특성에 따른 토양수분의 시·공간적 분포 특성)

  • Kim, Sangwoo;Shin, Yongchul;Lee, Taehwa;Lee, Sang-Ho;Choi, Kyung-Sook;Park, Younshik;Lim, Kyoungjae;Kim, Jonggun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.29-37
    • /
    • 2017
  • In this study, we analyzed the impacts of land surface characteristics on spatially and temporally distributed soil moisture values at the Yongdam and Soyang-river dam watersheds in 2014 and 2015. The soil moisture, NDVI (Normalized Difference Vegetation Index) and temperature values at the spatio-temporal scales were estimated using satellite-based MODIS (MODerate Resolution Imaging Spectroradiometer) products. Then the Pearson correlations between soil moisture and land surface characteristics (NDVI, temperature and DEM-digital elevation model) were estimated and analyzed, respectively. Overall, the monthly soil moisture values at the time step were highly influenced by the precipitation amounts. Also, the results showed that the soil moisture has the strong correlation with DEM while the temperature was inversely correlated with the soil moisture. However the monthly correlations between NDVI and soil moisture were highly varied along the time step. These findings indicated that water loss near the land surface are highly occurred by soil and plant activities as evapotranspiration and infiltration during the no/less precipitation period. But the high precipitation amounts reduce the impacts of land surface characteristics because of saturated condition of land surface. Thus these results demonstrated that soil moisture values are highly correlated with land surface characteristics. Our findings can be useful for water resources/environmental management, agricultural drought, etc.

Surface soil moisture memory using stored precipitation fraction in the Korean peninsula (토양 내 저장 강수율을 활용한 국내 표층 토양수분 메모리 특성에 관한 연구)

  • Kim, Kiyoung;Lee, Seulchan;Lee, Yongjun;Yeon, Minho;Lee, Giha;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.111-120
    • /
    • 2022
  • The concept of soil moisture memory was used as a method for quantifying the function of soil to control water flow, which evaluates the average residence time of precipitation. In order to characterize the soil moisture memory, a new measurement index called stored precipitation fraction (Fp(f)) was used by tracking the increments in soil moisture by the precipitation event. In this study, the temporal and spatial distribution of soil moisture memory was evaluated along with the slope and soil characteristics of the surface (0~5 cm) soil by using satellite- and model-based precipitation and soil moisture in the Korean peninsula, from 2019 to 2020. The spatial deviation of the soil moisture memory was large as the stored precipitation fraction in the soil decreased preferentially along the mountain range at the beginning (after 3 hours), and the deviation decreased overall after 24 hours. The stored precipitation fraction in the soil clearly decreased as the slope increased, and the effect of drainage of water in the soil according to the composition ratio of the soil particle size was also shown. In addition, average soil moisture contributed to the increase and decrease of hydraulic conductivity, and the rate of rainfall transfer to the depths affected the stored precipitation fraction. It is expected that the results of this study will greatly contribute in clarifying the relationship between soil moisture memory and surface characteristics (slope, soil characteristics) and understanding spatio-temporal variation of soil moisture.

Movement Analyzing of Soil Moisture at a Hillslope Scale Considering Spatial-Temporal and Seasonal Characteristics (시공간적, 계절적 특성을 고려한 사면에서의 토양수분의 거동파악)

  • Oh, Kyung-Jun;Kwak, Yong-Seok;Do, Hoon-Kim;Kim, Sang-Hyun;Kim, Hyun-Jun;Kim, Nam-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.678-682
    • /
    • 2006
  • In order to analyze movement of soil moisture, Time Domain Reflectometry(TDR) with multiplex system has been installed at the Bumreunsa hillslope of Sulmachun Watershed to configure spatial-temporal variation pattern considering seasonal characteristic. An intensive surveying was performed to build a refined digital elevation model(DEM) and flow determination algorithms with inverse surveying have been applied to establish an efficient soil moisture monitoring system. Soil moisture data were collected through an intensive and long term monitoring 380 hrs in November of 2003 and 1037 hrs in May and June of 2004. Soil moisture data shows corresponding variation characteristics of soil moisture on the up slope, buffer, main channel zones of the hillslope which were classified from terrain analysis. Inferences and limitations of measured soil moisture data were discussed in conjunction with flow characteristic through terrain analysis.

  • PDF

Effects of different soil moisture conditions on growth, yield and stress index of adzuki bean from paddy field cultivation

  • Chun, Hyen Chung;Jung, Ki Yuol;Choi, Young Dae;Lee, Sang Hun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.337-337
    • /
    • 2017
  • Accurate and optimal water supply to cereal crop is critical in growing stalks and producing maximum yields. Excessive soil moisture may cause nutrient deficiencies and oxygen deficiency. Excessive soil water during crop growth stages results in decrease of yields. In Korea, the largest agricultural lands are paddy fields. Recently, upland crops are cultivated in paddy field soils to reduce overproduced rice in Korea. In order to success this policy, it is necessary to fully understand crop response to excessive soil moisture condition from paddy field soils. Adzuki bean is one of major legumes which provide protein in daily diet. Adzuki bean has been well know its weakness to excessive soil moisture condition, In order to obtain optimal yields of adzuki bean from paddy field cultivation, it is necessary to understand response of adzuki bean under different soil moisture conditions. This study investigated characteristics of growths, yields and response degree of water stress from adzuki bean. Three cultivars were selected for this study; Chungju, Hongeon, and Arari. All adzuki beans were cultivated in a paddy field which was divided into three sections with different soil moistures. The paddy field was located in Milyang, Gyeongsangnam during 2016. One section of the paddy field had the greatest average soil moisture content as 35.1% during adzuki bean cultivation (very poor). The second greatest soil moisture section had 32.6% (somewhat poor) and the smallest soil moisture section had 28.9% of soil moisture (somewhat well). During cultivation of three cultivar adzuki beans, soil moisture contents and groundwater levels were monitored. All the characteristics of growth and yield components were measured; height, thickness, 100 seed weights etc. Stress index values were calculated by Stress Day Index (SDI). All cultivars had the greatest yields from somewhat well section. Chungju had the greatest yields throughout all three sections compared to other cultivars. Chungju had 81% greater yield than Hongeon which had the smallest yield from somewhat well section. Arari set in middle from all sections. However there was no significant differences yields from very poor and somewhat poor sections. Leaf SPAD values tended to decrease and stable carbon isotope values increased as soil moisture increased. However, Chungju had no difference across different soil moistures in SPAD and stable carbon isotope values, while Hongeon had the greatest differences across sections. These trends followed by SDI values. Chungju had the smallest SDI values compared to other cultivars, which meant that Chungju was the strongest tolerance against excessive soil moisture than other cultivars. All three cultivars showed severe decrease of yields from very poor and somewhat poor sections. Arari and Hongeon showed great decrease from somewhat well section compared to yields from upland soil. These two cultivars may not be proper cultivating in paddy fields. In conclusion, adzuki bean is very sensitive to soil moisture condition and detailed soil managements are required to obtain optimal yields of adzuki bean from paddy field cultivation.

  • PDF

Development of Agricultural Drought Assessment Approach Using SMAP Soil Moisture Footprints (SMAP 토양수분 이미지를 이용한 농업가뭄 평가 기법 개발)

  • Shin, Yongchul;Lee, Taehwa;Kim, Sangwoo;Lee, Hyun-Woo;Choi, Kyung-Sook;Kim, Jonggun;Lee, Giha
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.57-70
    • /
    • 2017
  • In this study, we evaluated daily root zone soil moisture dynamics and agricultural drought using a near-surface soil moisture data assimilation scheme with Soil Moisture Active & Passive (SMAP, $3km{\times}3km$) soil moisture footprints under different hydro-climate conditions. Satellite-based LANDSAT and MODIS image footprints were converted to spatially-distributed soil moisture estimates based on the regression model, and the converted soil moisture distributions were used for assessing uncertainties and applicability of SMAP data at fields. In order to overcome drawbacks of the discontinuity of SMAP data at the spatio-temporal scales, the data assimilation was applied to SMAP for estimating daily soil moisture dynamics at the spatial domain. Then, daily soil moisture values were used to estimate weekly agricultural drought based on the Soil Moisture Deficit Index (SMDI). The Yongdam-dam and Soyan river-dam watersheds were selected for validating our proposed approach. As a results, the MODIS/SMAP soil moisture values were relatively overestimated compared to those of the TDR-based measurements and LANDSAT data. When we applied the data assimilation scheme to SMAP, uncertainties were highly reduced compared to the TDR measurements. The estimated daily root zone soil moisture dynamics and agricultural drought from SMAP showed the variability at the sptio-temporal scales indicating that soil moisture values are influenced by not only the precipitation, but also the land surface characteristics. These findings can be useful for establishing efficient water management plans in hydrology and agricultural drought.

An Analysis of Riparian Vegetation Distribution Based on Physical Soil Characteristics and Soil Moisture Content -Focused on the Relationship between Soil Characteristics and Vegetation- (토양의 물리적 특성 및 수분조건에 다른 하반식물의 분포 -토양환경과 식생과의 관계를 중심으로-)

  • 안홍규
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.5
    • /
    • pp.39-47
    • /
    • 2000
  • This study is to investigate the conditions closely related to the establishment of vegetation in the riparian zone: the soil condition, an important factor along with climate and light. Especially, the soil structure of the microtopographical formations in the specific area known as the riparian microtopographical zone investigated. In addition, the effect of the riparian microtopographical features on the ground water level, soil moisture content, and vegetation was studied. The results of this study are as follows; 1) At all sample sites, below the sand layer, a gravel layer is always present. This is the result of past floods. 2) Although Salix koreensis experiences frequent disturbances such as increase in river level and floods, this vegetation establishes itself in the most secure are in the microtopographical zone. 3) The growth of Phragmites japonica is closely related to the underground water level. 4) It is clear that Miscanthus sacchariflorus grows concentrated in dry areas. 5) The soil accumulation conditions differ according to the soil moisture content of each microtopgraphical feature. Accordingly, the moisture content of the soil is clearly different within the microtopographical zone. The continuous and long-term investigation and research on the relation of riparian reproduction and the relevance with location surrounding factors are necessary in the future.

  • PDF

Climate Change Impacts on Agricultural Drought for Major Upland Crops using Soil Moisture Model -Focused on the Jeollanam-do- (토양수분모형을 이용한 주요 밭작물의 미래 가뭄 전망 -전라남도 지역을 중심으로-)

  • Hong, Eun-Mi;Nam, Won-Ho;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.3
    • /
    • pp.65-76
    • /
    • 2015
  • Estimating water requirements for upland crops are characterized by standing soil moisture condition during the entire crop growth period. However, scarce rainfall and intermittent dry spells often cause soil moisture depletion resulting in unsaturated condition in the fields. Changes in rainfall patterns due to climate change have significant influence on the increasing the occurrence of extreme soil moisture depletion. Therefore, it is necessary to evaluate agricultural drought for upland crop water planning and management in the context of climate change. The objective of this study is to predict the impacts of climate change on agricultural drought for upland crops and changes in the temporal trends of drought characteristics. First, the changes in crop evapotranspiration and soil moisture in the six upland crops, such as Soybeans, Maize, Potatoes, Red Peppers, Chinese Cabbage (spring and fall) were analyzed by applying the soil moisture model from commonly available crop and soil characteristics and climate data, and were analyzed for the past 30 years (1981-2010), and Representative Concentration Pathways (RCP) climate change scenarios (2011-2100). Second, the changes on the temporal trends of drought characteristics were performed using run theory, which was used to compare drought duration, severity, and magnitude to allow for quantitative evaluations under past and future climate conditions.