• Title/Summary/Keyword: soil modeling

Search Result 792, Processing Time 0.027 seconds

Chaotic Analysis of Water Balance Equation (물수지 방정식의 카오스적 분석)

  • 이재수
    • Water for future
    • /
    • v.27 no.3
    • /
    • pp.45-54
    • /
    • 1994
  • Basic theory of fractal dimension is introduced and performed for the generated time series using the water balance model. The water balance equation over a large area is analyzed at seasonal time scales. In the generation and modification of mesoscale circulation local recycling of precipitation and dynamic effects of soil moisture are explicitly included. Time delay is incorporated in the analysis. Depending on the parameter values, the system showed different senarios in the evolution such as fixed point, limit cycle, and chaotic types of behavior. The stochastic behavior of the generated time series is due to deterministic chaos which arises from a nonlinear dynamic system with a limited number of equations whose trajectories are highly sensitive to initial conditions. The presence of noise arose from the characterization of the incoming precipitation, destroys the organized structure of the attractor. The existence of the attractor although noise is present is very important to the short-term prediction of the evolution. The implications of this nonlinear dynamics are important for the interpretation and modeling of hydrologic records and phenomena.

  • PDF

A Study of modeling using linkage of Watershed Model and river water quality model (유역 모형과 하천 수질 모형의 연계 적용에 관한 연구)

  • Han, Kun-Yeun;HwangBo, Hyun;Kim, Dong-Il;Kim, Ji-Eun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1074-1078
    • /
    • 2010
  • 도시화, 산업화의 진전으로 토지개발이 가속화되고 대지, 도로, 주차장 등 불투수층 면적이 늘어남에 따라 비점오염원에 의한 하천, 호소의 수질영향도가 커지고 있다. 특히 낙동강유역에서의 오염원관리, 특히 비점오염원의 정량화는 삭감시설의 삭감량 평가 및 배출오염원 평가에 더욱 절실한 문제로 부각되고 있다. 삭감시설의 삭감량 평가 시에는 실험실 규모로 이상적인 유량 상태를 가정하여 삭감효율을 산정하고 있으나 자연강우에 의하여 나타나는 삭감효율 평가는 이상적인 유량 평가 해석시 와는 사뭇 다른 경향을 나타낸다. 또한 유역 말단 지점에서의 3년 평균 수질이 목표수질을 상회하였을 경우 오염총량 기본계획 지역에서 오염총량 이행평가 지역으로 포함시켜 오염부하량 관리를 실시하고 있다. 그러나 배출부하량과 수질의 연계가 쉽지 않고, 그 원인이 되는 지역 및 시기를 찾아 특별 관리하는 것이 난해하여 하천 수질 관리가 어려운 실정이다. 이러한 이유들로 인하여 최근 비점오염원 영향의 심각성에 대한 인식이 커지고 있으며, 점오염원의 관리뿐만 아니라 비점오염원 관리의 필요성이 대두됨에 따라 두 오염원 형태를 통합적으로 관리하고 각각의 오염원에 의한 수질 영향에 관심과 필요성이 강조되고 있다. 또한, 최근까지 유역 모델과 수질 모형을 이용해 각각의 유역이나 하천에 적용하고, 수행한 예는 국내와 국외에 많이 있다. 하지만 수량과 수질을 함께 통합적으로 연계하고, 그 적용성을 평가한 연구는 그 수가 상대적으로 적다. 하지만, 최근 들어 수질의 통합하천관리의 중요성을 인식하고 각각의 모형의 장단점을 고려하여 다양한 모형들을 연계하는 연구가 진행 되고 있다. 본 연구에서는 이러한 통합적 수질관리의 필요성 증대에 따라, 유역 내 수문 순환 및 비점오염원의 발생 거동을 정량적으로 분석할 수 있는 SWAT(Soil and Water Assessment Tool) 모형을 통해 비점오염원으로 인한 유역 내 수질 영향을 파악하고, 이를 바탕으로 QUALKO 모형과 연계하여 하천 수질 모델링을 수행할 것이다. 또한, 이를 바탕으로 비점오염원에 의한 유역 내 하천 수질 영향도를 파악함으로써, 추후 비점오염원에 대한 인식 제고에 활용될 것이며, 모니터링 기법 및 GIS기반 유역관리모델 개발, 4대강 비점오염원 최적관리기법 연구 등에 활용할 수 있을 것으로 사료된다.

  • PDF

The Case Study : The Efficiency of Using UAV and 3D-model for Mine Reclamation Work Monitoring (무인항공기와 3차원 지표모델의 광해방지사업 모니터링에 대한 효율성 고찰)

  • Kim, Seyoung;Yu, Jaehyung;Shin, Ji Hye;Lee, Gilljae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • This study investigated the effectiveness of Unmanned Aerial Vehicle (UAV) and 3D modeling on mine reclamation monitoring. The high spatial resolution of 3.8 cm ortho-mosaic image and Digital Elevation Model (DEM) are constructed based on UAV air survey. The ortho-mosaic image effectively shows mine reclamation activities and recognize objects and topological changes in the image. The comparative analysis of 3D models between UAV based DEM and report based DEM reveals that total amount of $268,672m^3$ additional dumping of contaminated soil is equivalent to 710,000 ton. It concludes that a UAV based survey enables high accuracy spatial information extraction for mine reclamation activities with high efficiency. It is expected that UAV survey will be very effectively used for preliminary data acquisition and project monitoring for mine reclamation activities.

Modeling of Force Components Acting on Quay Walls During Earthquakes (지진시 중력식 안벽에 작용하는 하중성분의 모델링)

  • 김성렬;권오순;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.107-121
    • /
    • 2003
  • When the seismic stability of quay walls is analyzed, the magnitudes of force components acting on quay walls during earthquakes and the phase relations among these force components must be properly evaluated. In general, force components include inertia force of the quay wall, lateral earth force, and water force. The magnitude and the phase relation of each force component vary according to the magnitude of the excess pore pressures developed in backfill soils of the quay wall. The dynamic thrust mobilized at the contact surface between the backfill soil and the wall develops as a result of the interactions among these force components. We propose a simple model to evaluate the magnitude and phase variation of the dynamic thrust on the back of the wall in terms of the excess pore pressure. The proposed model can predict the dynamic thrust by summing the magnitudes of farce components calculated from design equations for seismic pressures on the wall. The proposed model was verified by comparing its results with the results from a series of shaking table tests.

Analysis of Sediment Discharge by Long-term Runoff in Nakdong River Watershed using SWAT Model (SWAT 모형을 이용한 낙동강 유역의 장기 유출에 따른 유사량 분석)

  • Ji, Un;Kim, Tae-Geun;Lee, Eun-Jeong;Ryoo, Kyong-Sik;Hwang, Man-Ha;Jang, Eun-Kyung
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.723-735
    • /
    • 2014
  • Sediment discharge by long-term runoff in the Nakdong River watershed should be predicted for the maintenance and management of the Nakdong River newly changed by the four major river restoration project. The data establishment by the analysis of runoff and sediment discharge using the long-term watershed model is necessary to predict possible problems by incoming sediments and to prepare countermeasures for the maintenance and management. Therefore, sediment discharges by long-term runoff in the main points of the Nakdong River were calculated using SWAT(soil and water assessment tool) model and the relations and features between rainfall, runoff, and sediment discharge were analyzed in this study. As a result of sediment discharge calculation in the main points of the Nakdong River and tributaries, the sediment discharge at the outlet of the Naesung Stream was greater than the Jindong Station in the Lower Nakdong River from 1999 to 2008 except the years with low precipitation. The sediment discharge at the Nakdong River Estuary Barrage (NREB) was corresponding to 20% of the Jindong Station which is located about 80 km upstream from NREB.

Estimation of Source Apportionment of Ambient PM2.5 at Western Coastal IMPROVE Site in USA (미국 서부 해안 IMPROVE 측정소에 대한 대기 중 PM2.5의 오염원 기여도 추정)

  • Hwang, In-Jo;Kim, Dong-Sool;Hopke, Philip K.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.1
    • /
    • pp.30-42
    • /
    • 2008
  • In this study, the chemical compositions of $PM_{2.5}$ samples collected at the Redwood National Park IMPROVE site in California from March 1988 to May 2004 were analyzed to provide source identification and apportionment. A total of 1,640 samples were collected and 33 chemical species were analyzed by particle induced X-ray emission, proton elastic scattering analysis, photon induced X-ray fluorescence, ion chromatography, and thermal optical reflectance methods. Positive matrix factorization (PMF) was used to develop source profiles and to estimate their mass contributions. The PMF modeling identified five sources and the average mass was apportioned to motor vehicle (35.8%, $1.58\;{\mu}g/m^3$), aged sea salt (23.2%, $1.02\;{\mu}g/m^3$), fresh sea salt (21.4%, $0.94\;{\mu}g/m^3$), wood/field burning (16.1%, $0.71\;{\mu}g/m^3$), and airborne soil (3.5%, $0.15\;{\mu}g/m^3$), respectively. To analyze local source impacts from various wind directions, the CPF and NPR analyses were performed using source contribution results with the wind direction values measured at the site. These results suggested that sources of $PM_{2.5}$ are also sources of visibility degradation and then source apportionment studies derived for $PM_{2.5}$ are also used for understanding visibility problem.

Construction of Database for Application of APEX Model in Korea and Evaluation of Applicability to Highland Field (APEX 모델의 국내 적용을 위한 데이터베이스 구축 및 고랭지 밭에 대한 적용성 평가)

  • Koo, Ja-Young;Kim, Jonggun;Choi, Soon-Kun;Kim, Min-Kyeong;Jeong, Jaehak;Lim, Kyoung Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.89-100
    • /
    • 2017
  • The Agricultural Policy/Environmental eXtender (APEX) model was developed to extend EPIC's capabilities of simulating land management impacts for small-medium watershed and heterogeneous farms. APEX is a flexible and dynamic tool that is capable of simulating a wide array of management practices, cropping systems, and other land uses across a broad range of agricultural landscapes. APEX have its own agricultural environmental database including operation schedule, soil property, and weather data etc., by crops. However, agriculture environmental informations the APEX model has is all based on U.S. As this can cause malfunction or improper simulation while simulating highland field. In this study, database for APEX model to be utilized for South Korea established with 44,814 agriculture fields in Pyeongchang-gun, Korea from 2007 to 2016. And assessed domestic applicability by comparing T-P unit load criteria presented by National Institution of Environmental Research and result of APEX model. As a result of APEX model simulation, average T-P value for decade was 6.18. Average T-P of every year except 2011 was in range of 5.37~10.43 and this is being involved into criteria presented by National Institution of Environmental Research. It is analyzed that adjusting slope factor can make the model applicable for domestic agricultural environment.

Application of Generalized Transmissivity Decreasing Function in TOPMODEL Operation (TOPMODEL 투수량계수 감소함수 일반화과정의 적용에 관한 연구)

  • Jeong, Seon-Hui;Kim, Sang-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.637-647
    • /
    • 1999
  • This study investigated the applicability of generalized TOPMODEL approach which introduces the power law of decreasing transimissivity with depth instead of the traditional exponential decreasing function. The 50m digital elevation model(DEM) of Dongkog subwatershed at Wichon Test Watershed was used to perform runoff simulation. Random number generation algorithm was integrated into the calibration process for the reliable of model performance. General power law version of TOPMODEL with exponent 2 and 3 showed higher simulation efficiency than other the approaches. This results from the fact that the power law models with exponent 2 and 3 can represent the soil characteristics of study area better than other models.

  • PDF

Estimation of Storage Capacity for CSOs Storage System in Urban Area (도시유역 CSOs 처리를 위한 저류형시스템 설계용량 산정)

  • Jo, Deok Jun;Lee, Jung Ho;Kim, Myoung Su;Kim, Joong Hoon;Park, Moo Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.490-497
    • /
    • 2007
  • A Combined sewer overflows (CSOs) are themselves a significant source of water pollution. Therefore, the control of urban drainage for CSOs reduction and receiving water quality protection is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as stormwater detention storage is highly dependant on the temporal variability of storage capacity available (which is influenced by the duration of interevent dry periods) as well as the infiltration capacity of soil and recovery of depression storage. As a result, a continuous approach is required to adequately size such facilities. This study for the continuous long-term analysis of urban drainage system used analytical probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model have evolved that offer much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics of the subject area using analytical probabilistic model. This study presented the average annual COSs and number of COSs when the interceptor capacity is in the range $3{\times}DWF$ (dry weather flow). Also, calculated the average annual mass of pollutant lost in CSOs using Event Mean Concentration. Finally, this study presented a decision of storage volume for CSOs reduction and water quality protection.

Study on Improvement of Response Spectrum Analysis of Pile-supported Structure: Focusing on the Natural Periods and Input Ground Acceleration (잔교식 구조물의 응답스펙트럼 해석법 개선사항 도출 연구: 고유주기 및 입력지반가속도를 중점으로)

  • Yun, Jung-Won;Han, Jin-Tae;Kim, Jong-Kwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.6
    • /
    • pp.17-34
    • /
    • 2020
  • In response spectrum analysis of pile-supported structure, an amplified seismic wave should be used as the input ground acceleration through the site-response analysis. However, each design standard uses different input ground acceleration criteria, which leads to confusion in determining the appropriate input ground acceleration. In this study, the ground accelerations were calculated through dynamic centrifuge model test, and the response spectrum analysis was performed using the calculated ground acceleration. Then, the moments derived from the test and analysis were compared, and a method for determining the appropriate input ground acceleration in response spectrum analysis was presented. Comparison of the experimental and simulated results reveals that modeling of the ground using elastic springs allows proper simulation of the natural period of the structure, and the use of a seismic wave that is amplified at the ground surface as the input ground acceleration provided the most accurate results for the response analysis of pile-supported structures in sands.